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PREFACE

This lecture series co-sponsored with the Fluid Dynamics Panel of AGARD, was held at the von Kdnmin Institute,
Rhode-St-Genise, Belgium, during the week March 16 to 20. 1986, as a follow-up to the continued involvement in the field
crt turbulent flows.

The intention was to make a presentation of the very latest developments in the domain of understanding and modelling
of turbulent flow which in recent years has seen the development of some fairly new ideas and lines of approach.

It was for this reason that, together with the most advanced classical concepts of modelling such as direct simulation on
super computers. large eddy simulation, solution of the Navier-Stokes equations in the spectral domain, some different
approaches were presented.MTese included the concepts of strange attractors, bifurcations, spatial and temporal
deterministic routes to chaos and lattice flow simulations. Thlese concepts, already applied in some other domains of physics,
may prove to be valuable tools in the attempt to understand some of the more complex features of turbulence, and may lead
to models better adapted to the new generation of parallel computers.

IThanks to the efforts of an international body of well-known lecturers, the result was very successful and the meeting a
source of lively and enriching discussions. I would like to take the occasion to present my thanks to all those who have
contributed to the organization and the success of this lecture series.

Ce cycle de confirences, organis avec: le support du Fluid Dynamics Panel de I'AGARD, a it tenu i l'Institut von
K&grinn, A Rhode-Saint-Genise, Ia semaine du 16 au 20 mars 1986, comme Iune suite A toute une sA.rie de cours donnis Irs
annies pr&6dentes dans le dontaine de la m~canique de la turbulence.

Le but 6tait de prisenter Ira tout dermiers diveloppentents dans les domaines de la description et la modilisation des
6coulements turbulents, domnaines dans lesquels on a assist6, ces derniires ann6es, A Ia naissance et la mise tn oeuvre d'un
certain nomnbre d'id~es nouvelles. Pour era raisons le cycle itait constitui de deux parties compI~nentaires. La nremi~re
couvrait rasentiellement Ira concepts les plus avaneds dans Ie dowaine de la modilisation classique, tels que Ia simulation

directe sur super ordinateur, la simulation des grandes structures. Ia solution des 6quations de Navier Stokes dans le
domaine spectral. Ensuite, on abordait une s~rie de sujets en grande partie nouveaux, mais tr6s prometteurs et ayant dijA fait

entrnichissantes. cuyclme soit prmisici dteue remerier etou euxebl qui ont cnontunbu siourcean iscusion Cttareussintresdeccs cletd

confirences.
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FUNDAMENTAIS OF TURBULENCE FOR

TURBULENCE MODELING AND ,IMULATION

by

W.C.Reynolds
Department of Mechanical Engineering

Stanford University
Stanford, CA 93305

USA

1. FUNDAMENTALS OF FLUID MOTION

1.1 Introduction

This chapter presents a brief review of fluid flow fundamentals pertinent to turbulence. We expect them
to be familiar to the reader, who may find our particular viewpoints, emphasis, and compact notation helpful
and interesting.

We will make extensive use of the cartesian tensor summation convention, where repeated indices imply
that the terms containing them must be summed over all possible coordinate indices. An overdot () will
be used denote a partial derivative with respect to time, and a subscript after a comma will denote partial
differentia±,on with respect to the indicated coordinate direction; for exalnple,

aP = Uii = _W +U 2,2 +UP3 ,5 .

We will also use the isotropic tensors 5,y and •j- , defined by

I ifi=j
64 0 otherwike.

and 1 if ijk is from the sequence 123123
Eijk = -1 if ijk is from the sequence 321321

0 otherwise

Various contractions will be used frequently, including

5,, = 3 EiEji.Cp = Cip Skq 5,j9qSkp

Tensors are entities that, in addition to being an array of elements identified by their subscripts, trans-
form in a very s.,ecial way when the coordinate system is transformed by rotation. A tensor that is totally
unchanged by an arbitrary rotation of the coordinate system is called isotropic. Any second-order isotropic
tensor must be a scalar times ij', and any third-order isotropic tensor must be a scalar times %A;. Moreover,
any higher-order isotropic tensor must be expressible in terms of the various possible combinations of these
two tensors, and hence they are fundamental building blocks in all sorts of physical modeling, including
viscous flow and turbulence.

1.2 The basic equations

The basic equations are derived by Lpplication of basic principles to an elemental control volume (Fig.
1.2.1). The conservation of mass gives

A + 0= (1.2.1)

where .3 is the fluid density, and ua. is the fluid velocity component in the 3 'h direction. This is also called
Lhe continuity equation.

%.
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dz 1

1

01"1

Figure 1.2.1 Control volume for basic equation derivation

The momentum equation is
(pui) + (Pui'),j = 0i,,, +A, (1.2.2)

where aij is the stress in the ith direction on a control volume surface perpendicular to the Ph axis, and fi
is the body force (per unit volume) in the Ph direction.

The conservation of energy requires that

(Peo) + (pueo),y = (a',,u)," +fiui - (1.2.3)

Here to = e + IV 2 is the total energy per unit mass, where e is the internal energy per unit mass and
V2 = uiuj, and qi is the conduction heat fliz (flow rate per unit area) in the ph direction oatuard from the
elemental control volume. The first term on the right represents the power input by the surface forces per
unit volume, and the second that by the body forces.

The entropy balance is
(ps) + (puys),i = p - (q,/T),i (1.2.4)

where a is the entropy per unit mass, T is the absolute temperature, and So is the entropy production rate
per unit volume. Here the term qi/T represents the entropy flux associated with the heat flux qi. The
second law of thermodynamics requires that the entropy production be non-negative,

so> o. . (1.2.5)

These ideas are useful in assessing constitutive models for the stres. tensor and heat flux vector, and in
identifying the processes that produce entropy (dissipate energy) in viscous flows.

1.3 The stress tensor

The stress tensor a,; must be symmetnc. This fact can be established by performing a moment of
momentum analysis on the elemental control volume of Fig. 1.3.1. The torques of the stress terms are all
of order dzldz2, and the moments of the momentum flows and body forces are all of higher order, hence
0'12 = 0`21.

00`21

TA

dzx

Figure 1.3.1 Control volume for stress ter-sor symmetry deriwvtion

The tensor can be split into two parts:

-P6k, + ri,. (1.3.1)

The P term represents the isotropic component of the (inward) normal stress; iii is the deviations from this
isotropic stress, attributed phenomenologically to viscosity. From a molecular point of view, ,ji arises from
molecular transport of momentum; the isotropic part P is determined by the average using the probability
distribution for molecular velocities (e.g. Boltsmann), and rly arises from anisotropy in the probability
d& tribution.

II
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1.4 TL, rmody eamic properties and concepts

The internal energy e reflects the randomly-oriented energy of molecular translation, rotation, vibration,
and other microscopic energy modes (chemical bonds, etc.). In general, e depends upon the thermodynamic
state (i.e. T and p), but for idealized gas and incnmpressible liquid models depends only on temperature.
It is sometimes called the thermal energy, and is all too frequently confused with heat (q.), which is the
transport of energy by disordered molecular processes. The internal energy o: an object can be increased by
a transfer of energy as either heat or woi k, and the energy flowing as heat can come either from a source of

internal energy or mechanical energy (kietie, potential, or work). The internal energy is a thermodynamic
property of matter, the heat transfer is not. The confusion between heat and internal energy is an infortunate

remrant of 4,- caloric the-ory of heat, but perhaps understandable since the theory was discarded only about
a century a

The "F.y can be thought of as a measure of the degree of randomness at the molecular level, and

in modern t,,e, .nodynamic treatments the temperature is interpreted as a measure of the sensitivity of this
*andomness to changes in energy at constant density. Orderly microscopic exchanges of energy (e.g. as work
or as bulk kinetic energv) have no associated entropy transport. But heat, the microscopically disordered
transport of energy, does carry entropy with it, abd it may be shown that this entropy transfer flux is qy/T.
For more discussion of these important thermodynamic concepts from this viewpint, see Reynolds and
Perkins (1977).

It is usually assumed that as far as the thermodynamic properties are concern.d the fluid is in a state
of local equilibrium, and hence tl_. the usual relations between thermodynamic properties are vajid. Thus,
the Gibbs equat.>ln is used to relate entropy changes to energy and density changes,

Tds = de + Pd(1/p). (1.4.1)

,he '.)'-alpy h i,' 4efined as
h = e + F/p (1.4.2)

a m.•.• ,nts the sum of the convected internal energy and flow work associated with the transport of
tass of fluid across a control volume boundary. We emphasize that it is the internal energy that

appears in the basic energy balance equation.
An alternative form of the energy e..ation is obtained using (1.3.1) in (1.2.3), moving the pressure term

to the left hand side;
(Peo) + (puho),1 = +fiuj• - qj- (1.4.3)

Here h0 = h + 2V 2 is the stagnation enthalpy. Note that the enthalpy appears as the conveyred energy per
ui,,. mass (internal energy e plus flow work P/p), but the internal energy e appears hi the energy storage
rate term. A common error is the use of enthalpy in both pla .s.

1.5 Kinematics of motion

Any deformation rate u,,1 can be deccmposed into the sum of a strain rate S,1 and a rotation rate 01,,,

ujd = !(Uj uj,, .u ) + !(Ui,, -uj,,, Sij + 1'4i3 .(1.)2 2

Note that the strain rate is a symmetric tensor and the rotation rate is antisymnet-ic. They play quite
different roles in fluid mechanics, particularly in turbulence, and for this reason we prefer forms of the
equations that make their presence or absence v.-ry clear.

1.6 Mechanical and thermal energy equations

The fundamental equations may be combined to derive an equatioz, describing the transport of macro-
scopic mechanical energy and another describing the transport of internal energy. The mechanical energy
equation is derived by contracting the momentum equation with the velocity; multiplying (1.2.2)i by ui,

W V2) + (pu4 V1),, = 01j, 2 tU, + f,.

The right hand side may be written as

..... • ... w + .o
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Then, using (1.3.1) to split the stress tensor and (1.5.1) in place of velocity gradients, and noting that
rf•li = 0 since r,, is symmetric and flij is antisymmetric (sum over both repeated indices is implied),
(1.6.1) can be rewritten as

(•p!V2) + ( 1 V2  
-S2 (P-,jV),, pS,, - (Pu,),, +fiu• + (riTu),,-(r,),S$). (1.6.2)

The sum on the right represents the input of macroscopic mechanical energy to the control volume,
which shows up as an increase in the kinetic energy of the flow. Two of these terms appear as power inputs
in the therm~al energy equation (1.6.4) but with opposite sign, and hence these terms represent exchanges
between thermal and mechanical energy. The first is PSj,, which is the rate of energy transfer, per unit
volume, from thermal energy to mechanical energy due to expansion of the fluid. The second is r,,S,, which
represents the transfer of mechanical energy to thermal energy by viscous forces. This is the only viscous
term involved in the entropy production equation (1.7.3), and hence this is the only viscous term properly
termed disspation. Since

f(ri,,u), -x= 0 (1.6.3)

if the integral is taken over a volume where either the velocity or stress is zero on the boundaries, this viscous
term has no global effect; it represents reversible viscous power input to t,..e control volume from surrounding
fluid. The term containing fi is the power input from body forces, and the (Pu 3 ),i term represents power
output by flow work.

The thermal energy equation is obtained by subtracting the mechanical energy equation (1.6.2) from
the total energy equation (1.2.3), and is

(PC) + (pu, e),,= -PS,, + (r,,) - q,,y. (1.6.4)

Here PSi represents the power output from thermal energy due to expansion of the fluid, r, S,, is the power
input to the thermal energy due to irreversible viscous effects, and qi,y is the net power output due to heat
conduction, all per unit volume.

Note that the enthalpy, which appeared in the alternate form of the total energy equation (1.4.3), does
not appear in the thermal energy equation. We have derived the thermal energy equation correctly from
first principles. One must be wary in reading literature where the thermal energy equation is developed from
a 'heat balance', because there is no such principle as the conservation of heat.

1.7 Irreversibility rate equation

Using the conservation of mass equation (1.2.1) in th - Gibbs eqitation (1.4.1),

pTDs = pDe + PS. (1.7.1)

where D denotes the substantial derivative

Do = io0 u0,j. (1.7.2)

Using the thermal energy equation (1.6.4) and the entropy balance (1.2.4), this yields an expression for the
irreverssbility rate,

T = -•qT, +%;So; >_ 0. (1.7.3)
This clearly identifies the viscous dissipation term as discussed above, and provides a neat framework for

evaluation of consitutive models for the heat flux or viscous stresses.

1.8 Constitutive equations

The theory of linear algebra is extremely helpful in developing constitutive models for the beat flux and
viscous stresses, and also for developing turbulence models. We will use these ideas to review the constitutive
equations so as to set the stage for later use of these ideas in developing turbulence models.

The most general vector f. that is a function of orly one other vctor vj is

fi - Cv, (1.8.1)

where the coefficient C can be a function of scalars, including the invariant of the vector (its magnitude
vtvk). Higher-order terms, such as vivkvt, need not be added since they are represented by allowing the
coefficient to depend on the invariant of v. Thus, if one assumes that the heat flux vector q, is a function of
the temperature gradient vector T,1 , the most general form is the familiar Fourier heat conduction law,

S~ - -
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q= -kTi (1.8.2)

where k is the thermal conductivity, which depends to first approximation on the temperature and may,
in higher approximations, also depend on the scalar TA T,k. It is generally believed that (1.8.2) describes
heat conduction in fluids, except perhaps in regions of very strong temperature gradient such shock waves
or combustion fronts.

The most general tensor aii that is a function of only one other tensor bi) is, in three dimensions,

az = ,, + Ebsy + Cbj~j (1.8.3)

where b,', = bikbkj. The coefficients A, B and C may depend on relevant scalars, including the three scalar

invariants of the tensor b. Higher-order terms such as P, = b6'bki need not be added since, by the Cayley-
Hamilton theorem, they can be expressed in terms of lower-order terms and the invariants of b and hence
are already included in (1.8.3). Therefore, if it is assumed that the viscous stress tensor rj, is a function of
the local strain-rate tensor Sji, this functional dependence must be of the form

,j = Aii + BS,, + CS,. (1.8.4)

where the coefficients may depend on scalars, such as temperature, density, or the invariants of S. This is
called the Stokes model for viscous stresses.

The rats strain-rate S = (SjiSyj)/12 is a reciprocal time scale for the fluid deformation. If this time
is long compared to molecular collision times, then the strain is considered weak and only linear terms in
(1.8.4) are used. This leads to

Si , = Ai + BS, (1.8.5)

where A can depend at most linearly on the invariants of S, and B must be independent of S. If it further

assumed that P = - Io., then by (1.3.1)

rkk = 0 = 3A + BSkk

so 1
A = -- BSkk. (1.8.6)

3

For a simple shearing flow where the only non-zero strain-rate elements are

S12 = S21 = -•u
2 az2

one defines the fluid viscosity p by
= 2 •S12 (1.8.7)

from which, using (1.8.5), it follows that B = 2p. The resulting Netvtonian corstitutive equation is

% ,i- ýpA&A, (.8823

Note that the Newtonian constitutive equation assumes only that the viscous stress tensor is a trace-free
linear function of the local strain rate; this assumption is believed to be quite adequate for many continuum
fluid lows. The model fails in strong shock waves (normal stresses are incorrect) and in flow of polymers
(rotation rates e also important).

Using (1.8.2) and (1.8.8) in (1.7.3), the irreversibility rate becomes

Tip = !Ti T,, +2p(Sisi - 'Si,,S,) t 0. (1.8.9)

It is clear that the heat flux term k positive-definite. It is left as an exercise to demonstrate that the
strain-rate term is also positive-definite (Hint: evaluate in the principal coordinates of S., by expressing the
diagonal elements as the components of a vector in polar coordinates).

1.9 Vorticlty

Vo-ticity is one of the most fundamental concepts in fluid mechanics, and probably the most important
concept in turbulence. The vorticity . -ctor gj is defined by

Wi= k . (9.1)

ii
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Itz- Note that ejy u =,# 0 and hence the vorticity, by definition, is divergence free,

By the definitions, the vorticity is related to the rotation rate,

W4 = j4hJfk,. (1.9.3)

Taking e,,qx(1.9.3)i , one finds

f1qp = EPqiWi. (1.9.4)

The vorticity field can be thought of as contributing to the velocity field. Forming epqix(1.9.1)j,q, one
finds

CWes Epq=CijkUkjq tq• jpq -- tp qq

or

Ui,• = --•ekkOw,k +(uk,k),,. (1.9.5)

This is a Poissoa equation for the velocity, analogus to the equation for temperature in a heat conducting
medium with distributed sources. Eqn. (1.9.5) display. two 'sources' of velocity, namely vorticity (more
specifically vorticity gmdients) and flow divergence (expansion or compression). In addition to the velocity
generated by these sources, one can also have an additional component of velocity satisfying the Laplace
equation ujk = 0. From (1.9.5) we see that this component coule be thought of as arising from uniform
wor'icity (a solid-body rotation) and uniform irrotational expansion, of which irrotational flow at constant

density is a special case.
The part of the velocity field due to the vorticity gradients may be found using the general soluticn to

the Poissca equation; at any instant in time, this solution is

ui(x) = - f G(x,x')ei,w,,& (x')d~x' (1.9.6)

where G(xx') is the Green's function for the Poisson solution in the flow domain, and d3x' represents an
element of volume for the interation over the flow domain. The Green's function for an infinite domain is

-1
G(x,x') = (1.9.7)

4,,r/1 ,- 2)(5. - e.)

Using this Green's function in (1.9.6), and integrating by parts to transfer the k differentiation from the
vorticity to the Green's function, one finds

f - (z - ) wdx*(1.9.8)
x) , [ - z)(Xk -Xk ) ] w -I2

This is called the Biot-Savart equation. It gives that portion of the velocity field arising from vorticity, for an
infinite flow domain. Computational methods in which markers track the motion of vorticity-bearing fluid
use the Biot-Savart equation to compute the velocity field; this is an efficient calculation if the vorticity is
highly concentrated and most of the fluid has negligible vorticity, and there are many interesting problems
in turbulence that can be addressed in this manner.

We emphasize that all of the features of vorticity discussed thus far are kinematic in nature, and apply in
either compressible or incompressible flows. in the next sect-on we will adress the dynamic- of the vorticity.

1.10 Vortlcity dynamics

Using the continuity equation (1.2.1) and the stress tensor split (1.3.1), the momentum equation (1.2.2)
can be written as

'; - Uqtt-q P(ri,-P,A+fa). (1.10.1)
p

Taking eiLx (1.10.1) k,j one obtains

g (.1(, + Uj,,; = -Cjh•,jU,,4,, +e,,a [• (',-P, 5 +fa)] ,, •

Using (1.5.1) and (1.9.4), the first term on the r•ght is exactly

•Se- S,.C4• .

; .I
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The pressure term can be expanded into two terms, one of which vanishes, and the vorticity equation becomes

Sji + uiwci,- = wjSq - S1iwi + eCik ,+ Pk P'- (1.10.2)

Note that the left-hand side of (1.10.2) represents the rate of change of vorticity following a fluid particle.
Thus, the terms on the right display the processes that can give rise to changes in vorticity of a fluid particle.
The first term represents the straining of vortex filaments, and is a crucial term in turbulence; in a two-
dimensional flow, this strain is always in planes perpendicular to the vorticity, and hence there is no vortex
stretching in two-dimensional flow. The second term shows that fluid compression (Shk < 0) tends to amplify
the vorticity, and expansion to attenuate it. The term containing rkq represents viscous effects, including
diffusion. The term containing pressure gradients and density gradients shows that these may combine to
act as a source for vorticity, if these gradient vectors have a non-zero cross product, this term is important
in the atmosphere. Body force gradients can also generate vorticity; but body forces are often conservative,
i.e. of the form

IA = pAk (1.10.3)

where 0 is a scalar potential, and (1.10.2) shows that such forces do not generate vorticity.
In a Newtonian flow where p = p(t), pu is constant, and IA = pAk, the vorticity equation becomes

(ji + uW ,, = •oij - cj$iS + vziw,,.. (1.10.4)

This is the form to which we will refer most often in our studies of turbulence; it emphasizes the interaction
between strain-rate and vorticity that is so important in turbulence.

One usually sees the vorticity equation with the first term on the right in (1.10.4) replaced using an
identity derived from (1.5.1) and (1.9.4),

0Y$ = (wjuj,, (1.10.5)

We prefer (1.10.4) because it makes the interaction between vorticity and strain-rate very clear.

1.11 Vortex lines and tubes

Uj + Sb&j

0.,

Figure 1.11.1 Velocities along a vortex line

A vortex line is a line everywhere tangent to the W. vector. Along a vortex line (see Figure 1.11.1)

Szj wi
T = (1.11.1)

Vortex lines move as the fluid moves. For inviscid, incompressible flow, the vortex lines move with the
fluid. This fact is extremely helpful in understanding fluid flows in general and turbulence in particular, and
forms the basis for an important class of numerical methods-for simulating turbulent flow.

We will now prove this important fact about vortex lines. Let r be the vorticity at the center of an
elemental segment 68 of a line marked in the fluid along a vortex line at tinme t. The rate of change of the
vorticity following the fluid particle attached to the center of this line given by (1.10.4). Neglecting the
viscous term, and assuming constant density (so that SkA; = 0), aud using (1.10.5), the rate of change of the
vorticity of this fluid particle is

The right hand side of (1.11.2) is evaluated at time t using (1.11.1) to express 6xi in terms of 6s, yielding

, ts . (1.11.3)

'i

.- -- ------ .----..... _ ....
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Since each end of the line moves with its own velocity,

d(Sz) = 6uz . (1.11.4)

td
We now examine the changes in 6$z/wul:

"d ) 1 (z) 6X ,
d z j 1 (1.11.5)

Using (1.11.4) for the first term on the right and (1.11.3) for the second, the right hand side is cero, and
hence 6zl/ca is constant in time. The same is true for the other two components. Hence, if the line was
originally a vortex line, it will remain a vortex line, as we have claimed. Moreover, since 6zx = •oC, it
follows that k1 will be proportional to the line length.

We can form a vortex tube from a set of nearby vortex lines. In inviscid, incompressible flow, this
tube will move with the fluid, and can be stretched by strain along its length. This strain will intensify the
vorticity in the tube. Since the fluid is incompressible, and the tube is imbedded in the fluid, stretching the
tube reduces its dia.meter. The increase in vorticity can be though of in terms of the increased rotational
rate necessary to maintain conserved angular momentum as the tube decreases in diameter. These processes
of vortex convection and stretching by the flow are central in turbulence.

It is left as an exericise to show that, in inviscid, compressible flow, lineo everywhere tangent to -./p
move with the fluid. This fact may be useful in simulations of compressible turbulence.

2. TURBULENCE EQUATIONS

2.1 Averaging concepts
Different kinds of averaging procedures are appropriate for different situations. In situations that are

statistically steady, the time average is useful. Denoting a random field by f(x, t), its time average is

7(x) = lim - lf(x, t)d.
T-o Tf 0 (.11

The time average can not be used in fields that are statistically developing in time. But if the field is
statistically homogeneous, i.e. statistically the same at all space points, then a volur.ne average can be used,

7(t)= lira -1-0 1010 f(x,t)d3x. (2.1.2)L-.o JV Jo 0 o

If the field is not statistically steady or homogeneous in space, but is homogeneous on planes or along
lines, averages on the planes or lines can be used. But if the field is not statistically the same in time or any
space dimension, one has to resort to the concept of ensemble averaging, i.e. averaging over a large set of
(usually hypothetical) similiar experiments:

7(x,t) = lim , fn•3(L,0t) (2.1.3)

One must always be careful to choose an averaging cuncept appropriate to the situation. It will be
assumed that an avei aging process has been chosen that commutes with differentiations with respect to
both time and space; the ensemble average always has this property.

2.2 Turbulence decomposition
Each variable in a random field is represented as the sum of its average and its fluctuation,

f =7+1f. (2.2.1)

The averaging processes defined above are all such that

T= 0. (2.2.2)

It follows that
fh - (2.2.3)

and
fh' 0. (2.2.4)
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In compressible flows, mass-weighted averaging is often employed. The methods for doing this averaging are
simple extensions of those given above.

Most turbulence literature concerns incompressible flows. However, there is a class of compressible
flows that can be handled as a very modest extension of incompressible flows, namely flows where p = p(t)
(uniform density flows). Many practical flows fall in this class, including flow in an internal combustion
engine cylinder. The equations for uniform density flow are much simpler than those of full compressible
flow, and so in the interest of simplicity much of what follows will be limited to uniform density flows with
constant viscosity p.

2.3 Governing equations

If p = p(t), the continuity equation reduce- to

S+ pui,, = 0. (2.3.1)

We will write the turbulence decomposition with capital letters for mean quantities and lower case letters
for the fluctuations,

p = P + p' (2.3.2a)

S= U, + 4- (2.3.2b)

Inserting tlse decompositions into the continuity equation (2.3.1), and averaging, we obtain the mean
continuity eqvation

S+ pu',,, = 0. (2.3.3)

Subtracting this result from (2.3.1) we obtain the fluctuating continuity equation,

u:,, 0 (2.3.4).

Note that, for uniform denity flow, the fluctuation velocity field is divergence-free, as would be the mean
velocity field if the flow were incompressible.

For uniform density flow with p =constant and fk = 0, the momentum equation (1.2.2) reduces to

1
ti + uu,, = -pp,A +Vui,,,. (2.3.5)

p

Introducing the turbulence decomposition, averaging, and making use of (2.3.4), the mean momentum equa.
ton is found as

[4 + U, U,,, Ai +VU,,,i -A, ,i (2.3.6)

where
Aj = Viuil. (2.3.7)

The quantity -pRi, appears in (2.3.6) like a stress, and so is called the Reynolds stress after 0. Reynolds,
who introduced the basic decomposition.

Equations (2.3.3) and (2.3.6) would permit calculation of the mean density and velocity field if the
Reynolds stresses were all known. Since they are not known, we have a closure problem, which can be
addressed, but not solved, by further development of the equations for the Reynolds stresses.

An alternative way of thinking about the turbulence 'forces' has some physical appeal. From (1.9.1) it
follows that

-. 'Up' ... .U (2.3.8)

Multiplying by eip

E•ipi<2L, .i,,e,,j a4 = 6 - 6ph &6j)uý,,t10 u' i7 -p',

Using (2.3.4), this produces

or equivalently
2= u, + 5A•, t4. (2.3.9)

We define
P" 1-P+ 2 (2.3.10)

2 Pq
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where the mean square fluctuation velocity is

q2 =- T<. (2.3.11)

It is convenient to denote the mean-convection substantial derivative by

0= 0 + uo,.. (2.3.12)

Then, using (2.3.9) in (2.3.6), the mean momentum equation becomes

WUi = -1P .•+VUij.-Cuk. (2.3.13)p

In this alternative representation the turbulence provides a contribution to the normal stress in P" and a
turbulent boly force, but no shear stress. The potentiai of this alternative view of turbulence forces remains
to be investigated.

2.4.1 Mean vorticity equation

The turbulence decomposition of the vorticity is

W = flA + i,'. (2.4.1)

The mean strain rate and rotation rate are denoted by S,, and fli', respectively, and the fluctuation strain
rate by st,. By continuity for uniform density flow, s, = 0. Introducing the turbulence decomposition into
(1.10.4), and averaging, the mean vorticity equation is found to be

D11i = fl'Sii - (]Sj + zYif,,i -(wsu.), +-jsti. (2.4.2)

Note the appearance of the turbulence body force term wju• in the equation.

2.5 Turbulent fluctuation equations

The fluctuating continuity equation is (2.3.4). Subtraction of the mean momentum equation (2.3.6)
from the full equation (2.3.5) gives the fluctuating momentum equatiot.,

•--t -U Ui ,- ( -( u u, . j- pp,i +7JtlUyb. (2.5.1)

Subtraction of (2.4.2) from (1.10.4) gives the fluctuating vorticity equation

= +-S," -i' s-i + As-4

-U",, -(ut4.' - . +(ws'i - j'-- + uc4,,,. (2.5.2)

By taking (2.5.1),i one obtains an equation for the fluctuating pressure,

=-2u,, U-,, -(u,,, u;.,, -u',iu'.,) (2.5.3)

These equations are useful for deriving equations relating statistical properties of the turbulence and in the

study of the dynamics of turbulent fluctuations.

2.6 Kinetic energy equations

The transport equation for the turbulent kinetic energy

1 2 '1iq = iu',us 2.

is derived by multiplying (2.5.1)i by u• and averaging. After some rearranging, one obtains

!ý(Iq2) P - D - .',," (2.6.2)
2

Here
P = -u----,, (2.6.3)



S~1-11

is the rate of turbulent energy production,
P = '-'j u,, (2.6.4)

is the (homogeneous) rate of turbulent energy dissipation, and

1- 1 - )(2..5)
Jj= -p'U' -uuu $- 2 ) 26

is the turklent kinetic energy flux in the jth direction.
Note that P involves the product of turbulent stresses and mean strain rates, and that the mean

rotation rate does not appear explicitly in the turbulent kinetic energy equation (though it may influence
the turbulent kinetic energy by altering terms in the equation). P arises from the stretching of the tangle
of vorter filaments that make up the turbulence by the mean deformation. P is almost always found to be
positive, although there are situations in which it is negative.

Since the source of turbulent kinetic energy is the mean flow, the production term should appear
with opposite sign in the evolution equation of the mean kinetic energy. Multiplying (2.3.6)1 by Uj, and
rearranging, the mean kinetic energy equation is

D(ýUjU.) = -(-.PU,),j +!APS,, - 2ziS,,Sji + 2v(UiS,,),, -P - (Uu')~(2.6.6)

Indeed, -P does appear on the right, indicating a drain from the mean kinetic energy. The two pressure
terms represent the power associated with flow work and the power transfer from internal energy due to
expansion of the flow. The first viscous term is the rate of dissipation of mean kinetic energy by viscous
effects (see 1.8.9), and the second is the reversible viscous power transfer. The last term, which integrates
to sero over a large volume of flow bounded by non-turbulent fluid, represents an internally conservative
transfer of mean kinetic energy within this volume.

We have been careful to call P the homogeneous dissipation, because (as shown in the next chapter)
only in homogeneous turbulence does it represent the true rate of energy dissipation. FRom (1.8.9) the true
dissipation rate is

c= s'• ý = 2vs ', -u ,, (u<,,,- t,,). (2.6.7)

The right hand side of the turbulent kinetic energy equation can be modified to replace D by e, with a
concurrent modification in the definition of the flux. This is left as an exercise.

2.7 Reynolds stress evolution equation
The evolution equation for Ri, is ilerived by multiplying the h fluctuation momentum equation by u'

and the j" equation by u, adding the resulting equttions, and averaging. The result may be written as

U = Pi, + o,, + T,, - D,, - Jij,& . (2.7.1)

Here the production term
P,•= -(R Ski + AM-& Sk) (2.7.2)

is the source of Reynolds stress; note that its trace is

P•, = 2,P. (2.7.L}

The kinematic rotation term
Oi = IAflk " + Ri5flki (2.7.4)

is u-ace free (O,, = 0) and hence this term does not contribute to production of new turbulence energy, but
simply rotates the turbulence structure. The pressure strain term

TJ = +Ip'(u,, +u,,) (2.7.5)

is also trace-free and provides intercomponent energy transfer. The dissipation term

Di,, = 2 Vi,k uj',h (2.7.6)

has a trace
Di= 2D. (2.7.7)

.; -77



1-12

Finally, the flux of R~i in the kth direction is

J, + F.,, ) + "'"1 - AR,",,. (2.7.8)

Again we have used the mean strain-rate and rotation-rate instead of just the mean velocity gradients
to bring out the different roles played by strain and rotation. Most previous workers have included the mean
rotation term in with the production. But it is trace-free it does not add new energy (it is absent from the
turbulent kinetic energy equation), and therefore is different than production. The rotation term provides
exactly the changes that would be seen if the Rfy structure were to be rotated as a solid body without
change. Only strain, acting on the Reynolds stresses, can act as a new source for additional Reynolds stress.

The Ri. equation is sometimes rewritten so that the trace of the dissipation term is 2e instead of 2D.
with an associated modification in the flux. This is left as an exercise.

The Rij evolution equation forms the basis for many of the current types of turbulence models. It is
very useful in exploring the general nature of the changes that occur in turbulent flows subjected to strain.

2.8 Vorticity equation

The mean-square turbulent vort-city, sometimes called the enstrophy, is an important quantity in tur-
bulence. Its evolution equation, deri-ed by multiplying (2.5.2)i by w• and averaging, is useful in studying
the small scales of turbulence. Denoting

2 _- (2.8.1)

on- finds
1(IW2) ;;! ca2 Sq -- w;,, +nljs, W,

+W1w . -- z0,,yw.,; + w!-.u.'03w$ + 1l-w /)I . (2.8.2)L2 2 \ /.3J

3. STATISTICAL DESCRIPTIONS OF HOMOGENEOUS TURBULENCE

3.1 Introduction

A field in which all statistical properties are independent of position is called homogencous. If the
statistical properties are independent of the orientation of the coordinate frame, the field is called isotropic.
Turbulence may be approximated as homogeneous and/or isotropic, although turbulence is usually homo-
geneous if it is isotropic. Few practical flows are either homogeneous or isotropic. Nevertheless, regions of
practical flows often are essentially homogeneous, and homogeneous flows provide a very important point of
departure for models and theories of turbulence. Therefore, development of good understanding of homoge-
neous turbulence is an important first step in the study of turbulence.

In order for the turbulence to be homogeneous, the terms in the equations for statistical properties
of turbulence must be independent of position. Since the production term (2.7.2) involves mean velocity
gradients, these must be independent of position if homogeneity is to be achieved. Therefore, a necessary
condition for homogeneity is that the mean velocity be a linear function of the coordinates. Since there are
no Reynolds stress gradients in homogeneous turbulence, the mean momentum equation (2.3.6) shows that
the mean velocity field is unaffected by the turbulence.

Since the mean field is decoupled from the turbulence in homogeneous turbulence, almost any mean
velocity history can be imposed on homogeneous turbulence. Any mean strain-rate history can be imposed,
but the mean rotation history is determined by the imposed strain-rate history. From (1.10.5) it follows that
the last term on the right in the mean vorticity equation (2.4.2) is (wou:),i which vanishes in homogeneous
turbulence. Hence, the mean vorticity equation in homogeneous turbulence is

f(1 = fliS, - fliSii. (3.1-1)

Thus, while an initial arbitrary mean rotation can be imposed, any subsequent changes in the mean rotation
are governed by (3.1.1). This restriction is important in the analysis and simulation of turbulence distortion
by mean strain and rotation.

The statistics of homogeneous turbulence will depend upon time. Experiments on homogeneous tur-
bulence generally involve passing flow through a grid, which generates turbulence, and then through a flow
passage of varying cross section. The flow is approximately homogeneous as seen by an observer moving
downstream with the mean flow, and the evolution of this turbulence as seen by the observer is interpreted
as the time evolution of the turbulence. The behavior of turbulence under imposed mean strain can be
studied by changing the cross-sectional geometry of the flow channel. Ingeneous experiments permit great
flexibility in such experiments (Gence and Mathieu 1980). Homogeneous shear flow, in which the mean

~ ~-4.
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streamwise velocity gradient ig uniform across the flow, can be produced using upstream grids of special
geometly (Tavoularis and Corrain 1981).

Grid turbulence is not quite isotropic. However, by placing a contraction in the flow stream downstream
of the grid, essentially isotropic turbulence can be obtained (Comte-Bellot and Corrain 1966) for study in
a subsequent constant cross-section duct downstream. One can also study the relaxation of homogeneous
turbulence after strain in such a duct.

In the period 1960-1980, a number of basic experiments on homogeneous turbulence provided a sound
data base on these flows. Since then numerical simulations of homogeneous turbulence have added consid-
erably to this data base. The insight gleaned from these experiment and simulations now allow us to paint
a useful picture of the structure of homogeneous turbulence. The next section presents this picture and
discusses the important scales of turbulent motion.

3.2 Structure and scales in homogeneous turbulence

One can think of homogeneous turbulence as a complex tangle of vortex filaments, each acting as a
"Biot-Savart source" in moving, distorting, and and straining all the filaments (Fig.3.2.1). This continual
vortex stretching concentrates the vorticity, and so the volume of vortical fluid tends to be a small fraction of
the total. Vortex filaments of the same sign tend to collect, and this provides a mechanism for the creation
of larger eddies. This is counterbalanced by the three-dimensional straining of filaments, which tend to
twist and tangle themselves to produce smaller eddies. The imposition of mean strain distort the tangle of
vortex filaments, much as the fibres in a ball of steel-wool are distoreA when it is stretched. This alters the
structure of the filaments, and hence the structure of the turbulence. Upon removal of the mean strain-rate,
interactions between filaments randomize their orientation, bring about a return to isotropy.

This tangle of vorticity produces a very broad range of turbulent motions. The larger scales are more
efficient in generating the Reynolds stress required to extranct energy from the mean field flow, and and
new turbulent energy appears initially at large scales. Through the complex non-linear interactions, which
are inviscid processes, turbulence energy is cascaded successively to smaller and smaller eddies, ultimately
to be dissipated by viscous straining in the sma'eest eddies, where the local strain rates are the greatest.

Figure 3.2.1 Homogeneous turbulence as a tangle of vortex filaments

The scale of the largest eddies is set by whatever object produced them. In grid turbulence the grid
mesh determines the largest eddies, in wakes the large eddies scale on the diameter of the object, and in
pipes they scale on the pipe diamet,-. The scale of the smallest eddies is set by the rate at which they must
dissipate energy, provided to them by the large eddies through the cascade, through viscous stresses. The
role of viscosity in turbulence is to set the scale of the smallest eddies.

These ideas suggest that the dissipation rate is determined by the scale of the energetic large-scale
turbulence which starts the energy cascade. If we ausume that q2 and c characterize these large scales, then
by dimensional analysis the length scale of these eddies is

t= q3 /c (3.2.1a)

and the time scale is
r q2 /C. (3.2.1b)

The velocity scale is of course just q. These scales tell us how the statistical properties of large eddies should
be non-dimensionalised to collapse data from similar flows at different scales.

The Reynolds number of the turbulence, defined in terms of the velocity and length scales for the large
eddies, is

= -(. 3.2.2)

In practical flows, q is generally proportional to the velocity difference driving the flow (velocity at the center
of aL pipe or the velocity defect in a wake), and t is proportional to the object dimension. Thus, RT is usually
proportional to (but smaller than by a factor of 20-100M the flow Reynolds number.

--i'
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The scales of the smallest eddies are de~ermined by the e and v. By dimensional analysis, the length
scale must be" • ~~tK = : •) / (3.2.3 ,,)
Tand th o time scale
Sn•~r = ,/d •.(3.2.3b)

S These Kolmogorov scales characterize the vortex filaments in turbulence, with the cores of the vortex being
of order 1K and rotation time for the core scaling on rx. The corresponding velocity scale, characterizing
the velocity difference developed locally around a vortex filament, is

VK - (ye) /' (3.2.3c)

Using these scales, the ratio of the largest scales to the smallest scales is

3/4
= '4"'(3.2.4)

Thus, the range of turbulence eddies broadens as the Reynolds number increases. This wide range limits
direct numerical simulations of turbulence to low Reynolds numbers. Large eddy simulations of turbulence,
in which turbulence of smaller scale than the computational mesh is modeled and the larger scales are
computed, depends heavily on models for the small scales. It is tempting to approximate this sub-grid scale
turbulence as homogeneous, and therefore a firm understanding of homogeneous turbulence is important to
progress in large eddy simulation.

The remainder of this chapter is devoted to the mathematics used to describe the statistical properties of
homogeneous turbulence. Subsequent chapters deal with the dynamic evolution of these statistical properties
in response to imposed mean strain.

3.3 Correlations and spectra

The statistical properties of homogeneous random fields are most often described in terms of correlations
and spectra. for example, if f and g are two random field variables, the two-point correlation of f and g is
defined as

Qj,(x,x', t) =< f(x, t)g(x, t) > (3.3.1a)

where the overline denotes a volume average and the brackets denote an ensemble average. Ensemble and

volume averages are usually assumed to be the same for homogeneous fields (ergodic hypothesis); the dual
averaging is therefore redundant but useful in the analysis that follows.

For hc.togeneous fields Qfg depends only on the separation of the two points r = (x' - x) and t,

Q,5 (r, t) =< f(x, t)g(x + r, t) > . (3.3.1b)

Often the time dependence of the correlation is not expressed explicitly, but it must not be forgotten.
There is an infinite set of other correlations of possible interest, for example the two-point correlation

with time delay, three-point correlations, etc. A complete statistical description requires knowledge of the

probability density function for all variables of interest at all space points and time, an impossible goal to
achieve. Therefore, statistical descriptions are always limited in what they can provide, and the challengs is
to provide what is really essential, with minimum effort and maximum accuracy.

In homogeneous fields, Fourier expansions can be used to represent individual realizations of the fields.
Suppose that f and g are defined within a box of interest (Fig. 3.3.1). In order to give them Fourier
expansions we have to imagine that they are periodic functions, so let

{ f(x) inside the box
A(x) periodic repetition outside.

The Fourier representation of . at any instant of time is

1(X) = •j(kI)e-ik''x (3.3.2a)
k' I

where k = (kl,k 2 , k3 ) is the three-dimensional wavenumber vector, and k "x = kzn. Since the Fourier
modes must fit into the box with integer periods,

k, = 21rni/L. (3.3.2b)

The summation is a triple sum over all Fourier modes,

I;.2
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00 00 00(3.3.2c)
' kI ks k

3 ks

Note that the Fourier coefficients may vary with time; we do not show this explicitly here.

Z2L

ZL

Figure 3.3.1 Box for Fourier representation

There is an important relationship between the Fourier coefficients of positive and negative wavenumbers
for a real field. Taking the complex conjugate of (3.3.2a), replacing k' by V",

P '(W = '( " e ' '
k"

where the * denotes a complex conjugate. Letting = -k,

'(x) = •/'(-kel-'x". (3.3.3)
kc'

Now, if f is real At is equal to its complex conjugate. Equating the Fourier coefficients of like exponentials

in (3.3.2a) and(3.3.2),
j(k') = i'(-ke)

or alternatively (for real f)
!(-k) = j'(k). (3.3.4)

The Fourier coefficients are evaluated using the orthogonality property of the Fourier modes, using
integrals over the domain. In , /hat follows f()d3 x denotes an integral over the box in Fig. 3.3.1. Then,
multiplying (3.3.2a) by 40" aia integrating over the box,

fek xI(x)d3x = 1 j(k') f ei(k-k') xd~x. (3.3.5)

Since each Fourier mode that fits the box contains an integer number of cycles,

f e(k-k').xd3x 0 ifk k' (3.3.6)f Lr' if k• -: W.

Hence all terms in the summation of (3.3.4) drop out except for the cne where k' = k. Thus, the Fourier
coefficients can be evaluated as

1(k) = . (3.3.7)

The two-point correlation of f and g can be expressed in terms of the Fourier representations. Consider
the correlation of f and g within the box of Fig. (3.3.1),

< >=> ><(X)g(,) >= <ick)g(k) >e-i(k-x+k'.x').
hk k'

The brackets indicate that the Fourier coefficients are random variables that will differ from from realisation
to realization. Let kV = -k' and r = x' - x. Then, using (3.3.4),

< (x:)j(x + r) >= E E <i(k)#" (k") > e-'(I-k")+'k"?. (3.3.8)
k k"

Now we average by integrating over the box and dividing by Ls, denoting this average by an overline. Using
(3.3.6), all the terms in the sum drop out except the terms where k" k. The result is then

t' 7
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Olg(,) =< j~x)j(x + r) >= < l(k)§'Ck) > o•.(3.3.9)

In computational simulations in which the evolution of the Fourier coefficients is calculated for finite-series
approximations to the fields, (3.3.9) is used to calculate tie the two-point correlation.

Theoretical treatments take the limit as L --+ co, in which case the sums become integrals. To pass to
this limit, we note that the difference between consecutive wavenumbers in the summation is Ak. = 27r/L
for each direction, so Ak.L/2x = 1. We can multiply each term in the summation by unity three times to
obtain

tOj 9(r) = l<(k)D'(k) > L- AkiAk k3e"k'. (3.3.10)
k(2

We define the cospectrum of f and j as

.fg(k) = ( <i(k)?(k)>. (3.3.11)

This is the equation used to calculate the co-si ectrum in discrete spectral simulations of random fields.
Then,

= ~Ak(3Aks. (3.3.12)

Taking the limit as L -- oo, we define the cospectrum of f and g by

Efg(k) =lim Am,5(k). (3.3.13)

Efg does not become infinite as L -. oo because the Fourier coefficients of individual modes become very
small as the number of significant modes increases. As L -- o, Ak1 Ak 2AAk3 becomes an elemental volume
in wavenumber space dkldlcd2 dk3 = d-k. Therefore, in (3.3.12) the two-point correlation

Qfg(r) = imo 01g(r) (3.3.14)

become. the three-dimensionel Fourier transform of the cospectrum,

Qfg(r) = / Efg(k)e'k xdk. (3.3.15)

Here the triple integration is to be carried out over all wavenumbers.

There is an inverse of the transform (3.3.15). Multiplying (3.3.9) by e-ik''r and integrating over a box
of size L in r space,

/ f,,(r)e-k'd ~r = if < 1(k)§'(k) > e''- (3.3.16)

Each exponential in the summation will execute an integer number of cycles in each direction and hcnce

integrate to zero, except for the term where k Wk. Hence,

J ýg(r)e-C'k rPdr V L3 < (k)y(k) >= (2ir)%A,(k). (3.3.17)

In computational simulations based on finite-difference methods, this equation is used to calculate the cospec-
trum from the two-point correlation. Taking the limit as L --+ oo, and replacing k' by kc,

Efg (k) = (_L' q (,ý) e- kr ,d 3r. (3.3.18)

"Note that Ej, and Qf, are Fourier tranform pairs.
We could have obtained the cospectrum simply by Fouiier transformation of the two-point correlation.

We started with a finite box so that the relationships between the Fourier coefficients and the cospectrum
would be made clear, and also to derive results useful to persons engaged in discrete-representation simula-
tions of homogeneous turbulence in finite computational domains. It should be understood that the Fourier
transforms of f and g defined over an infinite region do not exist. However, because events at distant
separations are uncorrelated, Q "- 0 as In -- oo, and hence the Fourier transform of Qfg does exist.

-i
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3.4 Velocity correlations and spectra

4 • The velocity field in homogeneous turbulence can be represented in the terms cutlined above. Let f =

uj and g = up. Then, dropping the redundant ensemble average,

Q,.(r) = u',(x)u,.(x: + r). (3.4.1)

Qii is the two-point velocity correlation tensor. Note that

Qi,(U) = u:(x)u:(x) = q2 . (3.4.2)

Qj(r) expresses the average relationship "ween two velocity components measured at two locations
separated by a distance x. Q.. (repea fed Greek indices are not summed) will be largest for zero separation,
fall to a fraction of this value for separations comparable with the large eddies in the turbulence, and become
zero for infinite separation. If the eddies tend to be long in one direction and short in another, this will
be reflected in the different rate at which the correlation falls off with diffeient ra. Thus, the two-point
correlation tensor can tell one quite a bit about the structure of the turbulence.

Using (3.3.18), the velocity spectrum tensor is

E,j(k) = ( ) Q, we-1k-d'r (3.4.3)

where the integrations are over all r. It is related to the two-point velocity correlation tensor by (3.3.15),

Q~j(r) = f Ej,(k)esk'rd3k (3.4.4)

where the integrations are over all k.
The Reynolds stresses R%. = uju, are given by

R•i = Qj(o) (3.4.5)

for which (3.4.4) gives

Ri =f Eij(k)d3k. (3.4.6)

Reviewing the developments of the previous section, one sees that Ei-(k)dk represents the contributions to
R~i coming from an element of k space of volume d3 k positioned at k.

For uniform density flow, the continuity equation (2.3.4) provides important constraints on Qii(r). lrom
(3.4.1)

= ut(x)u'.(x + r),y = 0. (3.4.7a)

Replacing x by xe -- r in (3.4.1), then differentiating with respect to ri, (2.3.4) also requires that

8Qi. = 0. (3.4.7b)

The continuity equation (2.3.4) also constrains E,,. In terms of the Fourier expansion, continuity
requires

- Zikii(k)e-k'x = 0. (3.4.8)
k

This must hold for all x, which requires that the coefficient of each and every exponential -must vanish.
Hence, for each wavenumber vector k,

kp1y(k) = 0. (3.4.9)

Equation (3.4.9) is the continuity equation in Fourier form. It says that, for each Ik, the Fourier coefficient
vector A must be orthogonal to k in order for the velocity field to be divergence-free. This condition is used
very oftea in analysis and simulation of homogeneous turbulence. From (3.4.9), it follows (most obviously
using the the discrete Fourier representations) that

k = 0 (3.4.10a)

J*
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and kiJ•, 0 . (3.4.10b)F

The correlation tensor Qii has an important symmetry property. Noting that

Q~i(-r) = u,(x)u;.(x - r)

we let x = x) + r and rewrite this as

Qq(-r) '(xl' + r)u (x').

The right hand side is just Qji(r). Hence

Q,,(-r) = Qji(r). (3.4.11)

The spectrum tensor Eii also has a symmetry property. Since the Fourier coefficients for real fields
obey (3.3.3), It follows (most obviously from the discrete Fourier representations) that

.•;-k)= • < ,a(-k€) -k) >

< <fi:(k)f,(k) >= ki,(k). (3.4.12)

In the limit L -- oo this becomes
Ejk)=Eji(k). (3.4.13)

The turbulence kinetic energy may be expressed as

1 ,=1 13
iq--Q'(0)= _9ý(k)d k. (3.4.14)

Integral scales of motion may be defined in terms of Qq. For example,

L11 = fo Q, (ri 0, 0)dri (3.4.15)
Qi(o,oo)

is useful as a measure of the Zx scale of the turbulence. Here th,! arguments display the three components
of the separation vector,

Q." and Eq are the classical quantities used to describe homogeneous turbulence. They are less use-
ful for inhomogeneous turbulence because expansion functions other than Fourier modes really should be
used in directions of inhomogeneity. They are used for inhomogeneous flows when the turbulence can be
approximated as locally homogeneous over regions large compared to the integral scale.

3.5 Other statistical quantities
There are many other statistical quantities of interest in turbulence. Those that involve only quadratic

forms in the velocity are termed second-order. Any second-order statistical property of the velocity field can
be derived from the two-point correlation tensor or the velocity spectrum tensor. For example, a tensor of
interest is

--p Us u,' ttj q.

Fr-om (3.4.1),
----..) ,d ij r u, ix )u j.,,' (x + r). (3.5.2)

ar,

Replacing x by x' - r in (3.5.2), then differentiating with respect to rp, one has
So2,,(__ _ ____,__, __. , _

up(a-) -t,,p (x' - Z)u,q (x'). (3.5.3)

atprg

Now letting r - 0,

g -ae " (3.5.4)

8r,8. I'1=

- • .
-- .-- ,-
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The corresponding result in terms of the spectrum tensor can be derived directly by taking the derivatives
of the discrete Fourier series for the velocities, and proceding as in section 3.2 above, or by applying (3.5.4)
to (3.4 4). Either approach gives

D = Jp kpk1i,(k)d3k. (3.5.5)

Since gradients of all statistical quantities vanish in homogeneous turbulence,

('ýu), = o. (3.5.6)

Expanding the differentiation using the continuity equation (2.3.4),

= uý, ui,, = 0. (3.5.7)

Note that this is consistent with (3.5.4) and (3.5.5) if the continuity constraints (3.4.7) or (3.4.10) are applied.
The dissipation rate e may be expressed in general as

e = v(Di + Dii). (3.5.8)

From (3.5.7), the second term does not contribute, and in homogeneous turbulence the true dissipation rate
e is the same as the homogeneous dissipation rate P defined by (2.6.4).

Using (3.5.8), (3.5.7), and (3.5.5), we find that the dissipation rate is related to the velocity spectrum
tensor by

e = u f k2E (k)d3k. (3.5.9)

The factor k2 means that the main contributions to the dissipation come from higher wavenumbers (smaller

eddies) than those that provide the major contribution to the kinetic energy.

d.6 Vortilcty

The two-point eorticity correlation tensor is

wi,(r) = ,,(x) ,,; (x + r). (3.6.1)

Note that
W,,(o) = W2. (3.6.2)

FRom the definition of vorticity (1.9.1),
•2= D,..- Do•(3.6.3)

so it follows from (3.5.7) and (3.5.8) that in homogeneous turbulence the dissipation is directly related to
the mean-square vorticity,

e = Mw
2 . (3.6.4)

The enstrophy equation (2.8.1) is therefore sometimes used as a guide in developing model equations for the
dissipation.

The vorticity can also be expanded in a Fourier representation; for the box of section 3.2,

c4(x) Zc• i(k)e"kx (3.6.5)
k

Because the vorticity is by definition divergence-free,

kai(k) = 0 (3.6.6)

and because the vorticity is real
CD,(k) = c(-k). (3.6.7)

The vorticity spectrum tensor Hi,(k) can be developed following the approach above. It is of course
the Fourier transform of the two-point vorticity correlation tensor, and can be related to the velocity tensor.
Because the vorticity is divergence-free,

k.Hii(k) = 0 (3.6.8a)

and
kHii(k) = 0 (3.6.8b)

-- N
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and becauae it is real
Hi,(-k) - H'i(k). (3.6.9)

The Fourier coefficients of the vorticity are related to those of the velocity. Using (1.9.1),

.• ol~x -- • •pq(-k,)¢(ke-i'x.(3.6.10)

k

Equating coefficients of like exponentials, the vorticity coefficients are found to be

Zid(k) = -ike (k). (3.6.1)

From this it follows that
H,4(k) = e4pqCi,rkpkEq,.(k) (3.6.12)

One can express Qji in terms of the vorticity correlation tensor and Eli in terms of the vorticity spectrum
tensor. This requires the solution o. the Poisson equation (1.9.5), which is easily accomplished using the
"Fourier representations. Alternatively, one can multiply (3.6.10) by er,ik,. The result is

O(k) = ipq,'kZ (k). (3.6.13)

where k 2 = kjkc. Substituting in the discrete representation of t,, and taking the limit, one finds

EZ, (k) = ipqeir.s k"R.qI (k). (3.6.14)

This result finds important use in rapid distortion theory, where it is used to estimate the anisotropy in the
Reynolde stresses produced by distortion of the vorticity field due to imposed mean strain. It is also useful
in constructing models of Eqi for anisotropic turbulence using models for the anisotropic Hi,.

3.7 Correlations and spectra In isotropic turbulence

If the statistics are independent of the coordinate system orientation, only two types of correlations
completely characterize the velocity correlation tensor (Fig. 3.7.1). The longitudinal correlation function

f(r) = !-Qj(rh,0,0) (3.7.1)
q2

describes the coherence of the velocity fluctuations aligned with the separation of the two points. The lateral
correlation function 3

g(r) = -'Q 2 2 (ri,0,0) (3.7.2)
q

relates to the coherence of fluctuation velocities perpendicular to the separation axis.

1 tu(x) i(x') 1 e)

f (r) 9(r)

r r
0'• r r

0
Figure 3.7.1 Longitudinal and sateral correlation functions

The complete tensor Qi(r) can expressed in terms of these two scalar functions. The tensor must be a
function of the separation vector r. The most general such function is

Q,,(r) = C16j1 + C2 rjry (3.7.3)

where the coefficients C1 and C2 may be functions of the scalar invariant of the vector, r r--- . The

coefficients can be identified by expressing the longitudinal and lateral correlations:

Q122(ri, 0, 0) - g(r) C, (3.7.4)

_{

-- .... . .
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Q, (r,,0,0) = Cf(r) = C1 + C2 r2 . (3.7.5)

Solving for 0 1 and C2 , one finds

Qj 2 f (r)• g(r) rg(r)6ij. (3.7.6)

Note that f and g are scalar functions of the scalar separation magnitude r (and of tirne, not shown explicitly).
The continuity equation provides a relationship between f and g. Since r = r/•,rr,

.r = rk (3.7.6)
aIk -7"

Differentiating (3.7.6) with repect to rk,

qjk 2 ['- rkrj + rk+ a)+g (3.7.8)

where the primes denotes differentiation with respect to r. Setting k = j and using the continuity condi-
tion(3.4.7), one finds

P+ 2 (f - g) = 0 (3.7.9)

This integrates readily to give =fw) = jo" €)d.3.7.10)

E,y for isotropic turbulence can be obtained by Fourier transform of Qii as outlined in section 3.3.
Alternatively, we can construct its general form directly since, for isotropic turbulence the Eii tensor must
be a function only the vector k. The most general form is

E,,(k) = C1 , - + C2 k.k (3.7.11)

where the coefficients can depend on the scalar invariant of the vector, k -= Akj. Using the continuity
condition (3.4.10),

Clkj + C2 k2 ky = 0 (3.7.12)

hence
C2 = -C 1 /k 2  

(3.7.13)

Redefining C1 as 4urk2E(k), we have

E2()=E(k) ('.i.._ t/ki). (3.7.1.1

E(k) is called the energy spectrum function. Note that it is a scalar function of the scalar k (and of time,

not shown explicitly).
k2 k

kk

k,

Figure 3.7.2 Coordinate system for k-space integration

The tWr-ience energy is, using (3.4.14),

12lq2 f ' E(k)d3k (3.7.15)

The integration of integrals of this type, in %hich the unknown function depends only on the magnitude of
the vector, can best be carried out in spherical coordinates (Fig. 3.7.2). We have

I i-"
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12 o A2 (3.7.16)
(k00 Zif wfo 4=0 .. ks de~k

Carrying out the integrations over 0, and 0,

1 q2 =f o °° k d kf E(k)dk. (3.7.17)

We see that E(k)dk represents the contribution to the kinetic energy per unit mass arising from all the
Fourier modes in a spherical shell in k-space of radius k and thickness dk. Once E(k) is known, the entire
velocity spectrum tensor Eq is known from (3.7.14).

In theory, homogeneous isotropic turbulence evolves in time, and one should measure the spectrum
tensor by making measurements at many space points. In reality this is very difficult (but it is what is
in fact done in a numerical simulation). Insteed, laboratory experiments make use of Taylor's hypothesis,
which assumes that the velocity pattern measured as a function of time at one point is frozen in the fluid
and being swept over the probe. The probe meaburement is thereby interpreted as providing Q11 (rh 0, 0).
Using (3.7.14) in (3.4.4),

J 4•r k2  ( )3.7.18)

This integration is conveniently carried out in the coordinates of Fig. 3.7.3. We sort the Fourier contributions
according to those with the same wavenumber 1k, I. Terms from both sides of the k, axis contribute, with
opposite signs in their exponentials; these are combined into a cosine:

Q I (ri, 0, 0) = f f\/ -(i-) 2 cos(klrl)kdodkdk, (3.7.19)

We carrying out the 0 integration, and define the one dimensional spectrum function El by

EIRkd = '4_0 ( l 2 dk. (3.7.20)

Then,
Qss(rr,0,0) = E= (k)cos(kjrj)dki 

(3.7.21)

One can taking the Fourier cosine transformation of the measured Q1I(r 1 ,0,0) to gct E.(k1 ). Then,
differentiating (3.7.18) twice (a courageoub step with laboratory data!),

E( kj 2E(k") k= IE 1 (k1 ) (3.7.22)
2 aW 2 ak,

This allows E(k) to be determined. It also shows that if E(k) varies as a power of k in some range the.a
E1 (k1 ) will vary with the same power of kj.

N k -

% I
1c33

4.k,

Figure 3.7.3 Coordinates for one-dimensional spectrum integration

Eqn. (3.7.21) in essence defines Q11 as a one-dimensional Fourier cosine transform of El. The inverse
transform is

El (kI) -- Q 11 (rs, 0,0) cos(jri)dr1 . (3.7.23)

Noting that Q 1 (o) = q2/3 in isotropic turbulence, the integral scale defined b: (3.4.15) is given by (3.7.23)
as

LIz Af -42 El (0) 13.7.24)
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A! is the integral scale derived from the longitudinal correlation function f(r), and hence it is called the
called the longitudinal integral scale. Since it is non-zero, EI(O) > 0, in contrast to E(O) = 0.

3.8 Disaipation in isotropic turbulence

Using the isotropic spectrum (3.7.14) in (3.5.9), carrying out the integrations using polar coordinates
as above, the dissipation rate is found as

= uif. k2E(k)dk (3.8.1)

The factor k2 means that higher wave numbers (smaller scales) make more contribution to the dissipation
(and vorticity) than they do to the energy (compare 3.7.17).

Since the small-scale component of turbulence is generally throught to be very nearly isotropic at high
Reynolds numbers, isotropic turbulence theory is used as an aid in estimating e from laboratory data. This
approach makes use of the tensor D,,,, defined by (3.5.1). In an isotropic fieid, the only tensors upon which
Dip, can depend are the isotropic numerical tensors, hence it must be of the form

DjPq = C.61j6pq + C26ip6jq + C3 6is6jp (3.8.2)

where the coefficients must be scalars. The coefficients can be evaluated from three known constraints. First,
the definition forces P. symmetry,

Djpq = Di.qp. (3.8.3a)

Second, continuity requires that
Diiiq = 0. (3.8.3b)

Finally, we know that
S= '•.Dpp. (3.8.3c)

Using these considition, one finds

Djpq = j•[6.,6p - i(&Aq + 63P (384

The pertin nt quantity most asily measured in an experiment (again using Taylor's hypothesis) is

(', )2 15v* (3.8.5)

This is usually the way that e is e-tir'ated in laboratory experiments.
Another important turblence scale defined in terms of the dissipation is the microscale. It can be

approached through the longitudinal correlation function f(r). The symmetry property (3.4.11) indicates
that f(r) must be an even function of r, so its expansion is

12
1(r) = 1 - lar• + O(r4) (3.8.6)

The interception of this osculating parabvlu (Fig. 3.:.1) with f = 0 definec a scale A1 = \/2"-, called the
longitudinal Taylor microscale. From (3.5.4), using (3.7.5) and then (3.8.4),

a 3 Dil £S D 111 1 --

so
A lvq/C. (3.8.7)

Alternatively, the dissipation rate can be expressed as

A2= o,.. (3.8.8)

This equation is sometimes used to determine s from measurements of the longitudinal correlation.
Using (3.2.3) and (3.2.2), the ratio of the Taylor microscale to the Kolmogorov scale is

i 1- 1014/ (3.8.9)

Liie
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Using (3.2.1), the ratio of the energy-containing scale to the Taylor scale is

14/2[~1 R - . (3.8.10)

Thus the microecale falls between the smallest and largest scales. Although it is the most commonly zeported
turbulence scale, it is the least well understood. It has been suggested that it is a measure of the size of the
loops in the vortex filaments, but this is not at all certain.

A! r

Figure 3.8.1 The osculating parabola defines the Taylor microscale

3.9 Scaling of the spectrum in isotropic turbulence

The general form of E(k) deduced from measurements in isotropic turt ulence is shown in Fig. 3.7.1. By
(3.7.17), the area under the curve is the turbulent kinetic energy, to, which then greatest contributions come
from wavenumbers arnund the peak. The vorticity and dissipation occur predominantly at high wavenumbeis.

E(k)

energy range disipation range

Figure 3.9.1 Form of ,he spectrum in isotropic turbulence

It is generally thought that the small-scale motions in any turbulent flow become isotropic at high
Reynolds numbers, and therefore that the Kolmogerov scales caracterize the high wavenumber region
of any turbulent flow. Moreover, if one assumes that there is a univeruaz small-scale spoctrum, then by
dimensional analysis it must be of the form

IE/
4- - "t)) (3.9.1)

The one-dimensional spectrum El(k1 ) would have to scale in the saine manner. Figure 3.9.2 shows that the
data from a wide variety of flows do indeed collapse when plotted in these Kolmogorov variables. The d'4ta
flatten at low wavenumbers because they are ope,dimensional spectra where El (0) is given by (3.7.24).

SI
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Figure 3.9.2 Spec~ra in Kolmogorov variables

Kolmogorov suggested that there should be a range of wavenumbers in which the main process is the
passing of energy from larger eddies to smaller eddies (the cascade of turbulence energy), and that the
structure of this region should depend only on tlk rate of energy cascade. Since this cascade ultimately ends
with dissipation at the small scales, the rat- ot energy cascade must be e. If one assumes that E(k) depends
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only on e (and of course k) in this range, by dimensional analysis

F(k)k613-l constant =a

or

E(k) = OC2I3k-5/3 (3.9.2)

This is the Komogorou spectrum, a cornerstone of turbulence. Measurements give a Kolmogorov constant a
of about 1.5. The data of Figure 3.9.2 show the -5/3 range, with longer runs of -5/3 behavior at larger

Reynolds numbers, consistent with the broadening of scales as p4/4.

In the vicinity of the peak in E(k), the spectrum should scale on the large-scale variables (see section
3.1), and hence should collapse when plotted as

eE(k) (e 33q3= (3.9.3)
q G 0-

Where this form overlaps with the Kolmogorov spectrum the function G must be such that q drops out, and
this again establishes the -5/3 law for the asymptotic overlap range between low and high wavenumbers.

Figure 3.9.1 indicates that E(k) -- 0 as k -. 0, but there is controversy as to just how. There are
good arguments supporting both k2 (Saffman) and 0c (Loitskiunski) variation as k -+ 0. The 0c behavior
is required if E., is to be analytic at k = 0. The V2 behavior implies some residual preferential directions
at zero wavenumbers, which may be more characteristic of physical experiments. Numerical simulations
with delta spectra at mid-range fill-out as k4 as the turbulence develops, but sim,.lations initiated with k2

behavior at low wavenumbers persist as P2. Simple models of turbulence show that the rate of energy decay
in isotropic turbulence depends on the low wavenumber portion of the spectrum, and with the experimental
decay rates support the Vc.

E(k,t)

Sk

Figure 3.9.3 Evolution of the spectrum in decaying isotropic turbulence

Turbulence not subjected to mean deformation will decay as time passes. The larger eddies take more
time to change, and the smallest scales of motion adjust most rapidly. Figure 3.9.3 depicts the nature of
the evolution of E(k, t) (we now include the time variable heretofore suppressed). Note that the peak moves
to larger scales (small wavenumbers) because the smaller eddies die out fa~ter. Thus as time progresses the
integral scale will grow. Z

' i
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' kI

E(k,t)

/k

kL Ic,

Figure 3.9.4 Model spectrum for isotropic turbulence

A simple model spectrum for isotropic turbulence is shown in Fig. 3.9.4. It assumes a power law
behavior at low wavenumbers, a -5/3 inertial range, and a sharp cutoff at the Kolmogorov scale:

Aktm  for k:5 kL
E(k) = a2/3k-15/3 for kL, _ k < k•/,• (3.9.4)

0 for k > ký

Matching the spectrum at kL gives

kL =( E2/3 )3/(3m+5). (3.9.5)
A/

Assuming k. > kL,

q2=f E(k)dk = c(- j 1 !)ký21.I3eI0 m+ 2o

from which an estimate of the peak wavenumber is obtained,

k~'3= [2( , + 32 (3.9.6)

Again assuming k, > kL, the viscous cutoff wavenumber is estimated

e fj k2 E(k)dk = ,!062/3k413 (3.9.7)

from which

It is left as an exercise to work out the one-dimensional spectrum El for this model spectrum, and from that
to determine the integral scale. For m = 2 and a = 1.5, one finds

ACe/q 3 = 0.11. (3.9.9)

This model spectrum exhibits thr , --oer scaling for isoropic turbulence, and gives values of the scales within
about a factor of two of those fou id from actual spectra. It is very useful in constructing simple turbulence
models, in setting up initial fields fr turbulence simulations, and in addressing other aspects of homogeneous
turbulence.

[=,
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3.10 ThIrd-order statistics In Isotropic turbulence

Correlations involving products of three quantities are caled third order statistics. These depend on the
relative phases of the Fourier modes, information not contained in the spectrum tensor Eii. Of particular
interest in turbulence modeling are one-point third-order statistics. For isotropic turbulence these tensors
can be worked out using the methods used previously. For example,

U51= Cq3/ea. (3.10.1)

In dealing with the vorticity and dissipation equations, one encounters the tensor

Oijkpir = 'l-,p ttl,q 41,.. (3.10.2)

This is evaluated for isotropic turbulence by first writing the general tensor

lOjkpq = SiAP(C6Yq~r + 0 25 tk5
5 r + C36itSkq) + 8,j(C46pq~k, + CSSIkA, + CG6pr8ek)

+Sq(C0$,,$ 7, + 0 56 pk•jr + CO6p•,ik) + Ltk(Co0•piq, + C1,16-pjr + Ci 2S•pM-)

+6ir(Cis6pjr6e, + C14 6pejih + C166pk5,j). (3.10.3)

There are three are three symmetry constraints,

lbijkvqr l 0jiPqr (3.10.4a)

1,•Op" -='kic.,rqp (3.10.4b)

,Iijkpqr = ',kiptq. (3.10.4c)

Continuity also provides some constraints, but with the symmetries enforced only one is required,

Fo i= 0. (3.10.5)

Forming (uu.uut),u, and using homogeneity conditions, one can show that

o,,ijk = 0. (3.10.6'1

With these constraints, (3.10.3) can be reduced to a form containing only one unknown eoefficient. With
Cr, = A, one finds

0jikp9, A[(6,pfjqfin. + 6sj~pk~qr + Aij~pr~qk + SiqSprý,kA + 6 ilc6 pj~qr + &Okpq 6
jr + 5i'6p';6jk)

4 3
6-(6i-, + pj, r ,+ f,,fk-)]. (3.10.7)

For example,
(u',)S = A (3.10.8)

S - A. (3.10.9)

The deriuative skewness y7 is related to A; using (3.8.5) and (3.10.8),

,'7= (u4,,)s/( 1  /2 - A (sV-1) (3.10.10)

The skewness is measured to be negative, the term given by (3.10.9) is posetive. This is the turbulent vortex
stretching source term in the equation for mean-square vorticity (2.8.2), by which the turbulence tends to
enhance its own mean-square vorticity.

!1
S. ... t
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4. RAPID DISTORTION OF HOMOGENEOUS TURBULENCE

4.1 Introduction

The state of homogeneous turbulence changes significantly when it is subjected to mean strain. This
occurs in practice whenever turbulence passes through a duct of variable cross-section, such as a nozzle, when
turbulence is sheared by the mean flow, or when turbulence is subjected to a mean rotation, The general
trends can be understood using vortex stretching concepts. For example, passing turbulence through an
axisymmetric nozzle stretches the vortex filaments in the flow direction and tends to align them with the
flow direction, reducing the turbulent fluctuations in the direction of flow but increasing the fluctuations
transverse to the flow.

Because of the non-linearity of the governing equations, it is impossible to develop a rigorous theory of
these processes. There are two alternative approaches to such a theory. The first is to use some sort of a
closure model to produce a set of closed equations describing the evolution of statistical properties of the
turbulence in response to the mean btrain. The second approach is to simplify and then solve the exact
equations for special cases. Both approaches are useful. In this chapter we examine rapid distorton theory
(RDT), in which the exact equations for the fluctuation field are approximated in a way that is valid for
very strong imposed mean strain rate, yielding linear equations amenable to exact solution.

It might be thought that the response to large strain rate could be calculated using the Reynolds stress
transport equations (2.7.1). neglecting the terms that do not explicitly contain the mean velocity gradieius.
However, this analysis overpredicts the changes in the Reynolds stresses, because the pressure-strain term
Ti. in (2.7.1) produces an immediate effect that reduces the impact of the production term Pq by a factor
of about 50%. The Poisson equation for the fluctuation pressure (2.5.3) shows that a sudden onset of mean
velocity gradient instantly changes the fluctuation pressure field. The result is a sudden change of Ti with
the onset of applied $ij, and this must be considered in the analysis. Turbulence modelers refer to the part
of Tii that changes suddenly with a sudden change in the mean deformation rate as the rapid pressure strain
term. RDT plays a key role in understanding and modeling this term, and this chapter is intended to aid
the use of RDT in this work.

The basic idea of RDT is that when IS~q2 /e > 1 the time scale of the turbulence q2 /c is long compared
to that of the mean deformation, and so the turbulence does not have time to interact with itself. Thus, the
non-linear terms in the governing equations (2.5.1)-(2.5.3) involving products of flu tuation quantities are
neglected, and so the RDT equations are linear in the fluctuation quantities. The viscous terms are linear
and can be included in the analysis, but are often neglected and will be here.

These equations contain the mean velocity gradients, which must be independent of position for ho-
mogeneous turbulence but may depend on time. The convective operators D contain the mean velocities,
which must vary linearly with x in homogeneous turbulence. These coefficients prevent representation of
the solution as periodic in the coordinates, and this hampers direct solution by Fourier methods. However,
when transformed to coordinates marked on the mean flow at the start of the distortion, the variable co-
efficients are removed and the solution may be obtained by Fourier methods in the transformed system.
This transformation is used in the numerical simulations of homogeneous turbulence (Rogallo 1981), where
it permits the numerical solution to be exact for infinitely rapid distortions! The numerical simulations of
the full equations carried out using this program are useful in helping assess the range of applicability of
RDT, and it is rather surprising that, for some types of strain, RDT works remarkably well even at relatively
low strain-rates (Lee and Reynolds 1985). Thus, RDT is becoming recognized as being very important and
useful in turbulence analysis, modeling and simulation (Savill 1987).

4.2 The RDT equations

The most general mean velocity field in which homogeneous turbulence can exist is of the form

U, = Aik(t)xk (4.2.1a)

from which
Ui,k = Aik(t). (4.2.1b)

Note that (3.1.1) restricts the rotational history of the imposed mean deformation, but any mean strain rate
history can be imposed.
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Substituting (4.2.1) in (2.5.1), the inviscid RDT approximation for homogeneous turbulence is

4i + Aikxkuj,i =-u' Aj, -1,9 (4.2.2)

The continuity equation (2.3.4) also applies. We remind the reader that these equations hold if p = p(t), so
they can be applied in certain types of compressible flow situatiens.

Solution by Fourier methods is practical only if the coefficients in the equations are independent of x.
Therefore, it is necessary to transform the equations to remove the troublesome term on the left-hand side.
The transformation is assumed to be

fi= Bi,,(tllzk = t. (4.2.3)

Tfransforming (4.2.2) to the new coordinates, the left-hand side becomes

cTi+ au §kxk + A,,. Xk (9u' ..

Setting the coefficient Of Xk to zero to remove the variable coefficient,

b~k + AikB~j = 0. (4.2.4)

This defines the Rogallo, transformation. The Bi. can be found by solving these linear equations, although
a closed-form solution is not feasible. The transformation ties the new coordinate systems to the mean
motion, with the new grid distorting azid rotating as demanded by the mean flow. The Rogallo code for
direct simulation of homogeneoub turbulence operates in this coordinate system.

With this transformation the RDT momentum equations (4.2.2) become

clw -uAi, - 1 aeBkj (4.2.5a)

and the continuity equation (2.3.4) becomes

0.U (4.2.5b)

The Poisson equation for the pressure fluctuation is obtained by taking the derivative of (4.2.5a) with respect
to fk and the derivative of (4.2.5b) with respect to r and combining, using (4.2.4). Alternatively, one can
simply transform (2.5.3). The result is

1 a ~ Bk~ = -M~ al (4.2.5c)

These linear equations can be solved to track the evolution of the Fourier coefficients of the velocity field in the
transformed coordiates. The Reynolds stresses are integrals of this spectrum function, and the integrations
may be carried out in the transformed coordinates. If the spectrum in the oriainal coordinates is involved,
the spectrum must be mapped back to x space using the coordinate transformation.

Closed-form solution of the RDT equations for a general problem is not possible. However, exact
solutions for special cases can be obtained, in some cases in closed form and in others in terms of integrals.
The general solution can be found as a power series in time. Some of thest solutions that play useful roles
in understanding turbulence and in turbulence modeling will now be discussed.

4.3 Response of turbulence to rapid rotation

RDT can be applied to study the effect of rapid rotation on turbulence in the absence of strain. Taking
the rotation as clockwise about the x3 axis, the mean velecity is

U1 =Z u2 = rx (4.3.1b)
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"and the coordinate transformation is (Fig. 4.3.1)

= , cos(rr) - x2 sin(rr) (4.3.2a)

2= X2 cos(pr) + x, sin(rr) (4.3.2b)

6 = W3 (4.3.2c)

T = t. (4.3.2d)

Transforming, the RDT equations become

ou = - + r 1 U2 r (4.3.3a)

i l. e +asin(r --
-2 =-_ P-s - +'cos(rr)-• +u (4.3.3b)

8u3 1 alp
Pr - ' " (4.3.3C)

The transformed continuity equation is

8uo~r, aoi. 4, au'2 ,,acos(r) + sin(rT) - mInp) + 2-u cos(Ir) + 2 o o. (4.3.3d)

It is helpful to transform the velocity components to the rotating coordinate system. Denoting these
velocities by vi,

v, = u, cos(rr) - u2 sin(Pr) (4.3.4a)

S= W. cos(rr) + u, sin(rr) (4.3.4b)
V3 = U3. (4.3.4c)

Forming the equations for the new velocities form the old, one finds

=uj - 2 aE. r (4.3.5a)

ar p a8 i

002 1 ap
= - + 26'Vr (4.3.5b)

0V _ = Lap (4.3.5c)
ar P 9

a V, - 0. (4.3.5d)

The second terms on the right are of course the Coriolis terms.
Now we seek the solution for the evolution of the Fourier modes in the transformed space. Following

the developments of section 3.3, we write

Vi = i(,t)e&'t)e (4.3.6b)

where & is the wavenumber in the mansformed coordinates. Equating coefficients of like exponentials,

S.... j 2 r 2r0 (4.3.7a)
Or p

________________ ____

|2
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= !.2P + Mro, (4.3.7b)

!ý03 = i.3 (4.3.7c)ar p

rii = 0. (4.3.7d)

Applying the continuity equation (4.3.7d) to (4.3.7a.c),
1- 2r(o2 xi - 0oc2) (4.3.8)

P = iK2

where r.2 = 4 + x3 + 4g. Substituting (4.3.8) in (4.3.7a-c), and seeking solutions of the form 0D(& r) =

a, exp(ifir), one obtains

ifa, - 2r (a2XI - alx2) + 2ra2 = o (4.3.9a)
( .

ifia2 - 2r!(a2i 1C - a112) - 2ral = 0 (4.3.9b)

ia 3 - 2rb(a2XI - ajK2) = 0. (4.3.9c)

This linear equation system has non-trivial solutions only if the determinant of the coefficient matrix vanishes.
This condition gives

#2=4r2 1 K 4) =+ 2r2 > 0. (4.3.10)

Hence, except for modes with ics = 0, the solutions are undamped oscillations in time at frequency P(t).
The x3 = 0 modes require special attention. They correspond to two-dimensional modes with their

vorticity aligned with the rotation axis. The solution for these modes is

O(J5,r) = 01(1,0) - C(&)Tzr (4.3.11a)

0(fr) = 025(,0) + C(I)ICIr (4.3.11b)

03 (6, T) = O3 (6, 0) (4.3.11c)

where

C = 2 r ("0'(& 0) +202(,0)o. (4.3.11d)

But for r3 = 0 the numerator of C is zero by continuity, and hence the Fourier coefficients of these modes
do not change under rapid rotation. Thus, these coefficients can also be regarded as undamped oscillations
at frequency 8(5).

The solution for the Fourier coefficients is therefore

Oi = a+e'#s + ae- -". (4.3.12)

a1 ± and a2j, are related by (4.3.9a) or (4.3.9b),

K, K +" - 1)a2.. (4.3.13)

The coefficients aj± are set by the initial values of the Foutier amplitudes,

Ojo = aj+ + aj_ (4.3.14)

where 0,o is the initial value of Di(s). Using (4.3.13) and (4.3.14), one finds

al±= -- [(F r2 + 6-0) L•o - 20 (4.3.15)

2r'3 X.• r2% .'.
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Following section 3.4, the spectrum tensor Eli (in the rotating coordinate system) is

=i (L.) < Oj(s,r) O (1j,r) >. (4.3.16)

Using the solution and a bit of algebra, one finds

Es~~r=~-.j\j3 l51•!+/"2IC

+ C22 [ ") E (K,°) - (1 - i E2 2(tO) - 2"-(1 - ) (E+(r) + (E 0)°)) c2s(2,r)0

-2+2E 1 1 (KO) + - - (E12(• 0) + E, 0))] sin(2Elr) }. (4.3.17)

If the initial turbulence is isotropic, the initial spectrum is given by (3.7.14), and one finds that the
coefficients of the sin and cos terms vanish; hence there is no change in the spectrum as viewed by an obsever
in the rotating coordinate system. Since the spectrum is isotropic, the spectrum seen by a stationary observer
is also unchanged. Thus, rotation of itself will not distort the spectrum of isotropic turbulence.

If the initial spectrum is anisotropic, as for example produced by prior strain and associated rotation,
the residual rotation will simply cause the spectrum to oscillate at a frequency w = 2,6(6). The associated
Reynolds stress (in the rotating frame), determined by integrating Ell over all x, will oscillate in a compli-
cated manner that depends on the initial spectrum. However, using the symmetry property of the spectrum
(3.4.13), the contribution of the sin(2fir) term to the integral is seen to vanish. Hence, relative to a rotating
observer, the Reynolds stress oscillations can be expressed as an even power series in r arising from the
cos(26r) term. Hence, the Reynolds stresses seen by a stationary observer would, to O(t), appear to rotate
in the manner described by the kinematic rotation terms, with deviations from this behavior being described
by an even power series in time.

These are important results for turbulence modeling. Turbulence models, when reduced to the same
rapid distortion approximations, should not show any effect of pure rotation (rotation without straining)
on isotropic turbulence. More ver, when applied to the pure rotation of anisotropic turbulence, the models
should shown the kinematic rotation of the Reynolds stress described by (2.7.4), plus modifications by an
even power series in time. This condition is very useful in setting coefficients in turbulence models, and we
shall use it in Chapter 6.

4.4 Rapid isotropic compression or expansion

Consider next isotropic expansion (or compression) with

ui = rz,. (4.4.1)

The RDT momentum equations are
1 ,

+ ru:, = -ru: - (4.4.2)

The density is given by the continuity equation,

/• = -3pr. (4.4.3)

The RDT transformation is

Ci = ,e-rt " = t (4.4.4)
and the transformed equations are

-,u' - 1 8kJ -r, (4.4.6)

ar • ' p(t) ae
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- 0. (4.4.7)

Multiplying (4.4.6) by uý, the pressure term drops out by continuity (4.4.7). Averaging, we obtain the
RDT approximation for the kinetic energy,

1 d42
d" =rq" (4.4.8)

The solution is
q2 qe-2rt (4.4.9)

where qo2 is the initial kinetic energy. Thus, the turbulence kinetic energy will decrease with expansion
(r > 0) and increase with compression.

The evolution of the spectrum is obtained by solving the individual component equations. Fourier
expansions are used as above. The pressure fluctuations (i.e. the rapid part) are zero by continuity, and all
Fourier modes of the velocity vary as ezp(-rt). Thus, the spectrum retains its inital shape in the stretched
coordinate system, and simply scales in magnitude with q2 . As a consequence the integral scale (3.4.15)
varies in proportion to the strain,

Af(t) = A(O)e rt. (4.4.10)

These results are useful in constructing turbulence models for compressible turbulence. Some of the
turbulence models currently in use do not predict the proper behavior with compression, some even predicting
an increase in length scale as turbulence is compressed!

4.5 Response of turbulence to rapid Irrotatlonal strain

RDT analysis for irrotational mean strain is neatly handled using the vorticity equation. Under the
RDT approximations, with no mean rotation, (2.5.2) reduces to

N. = e.si - c,"Sek. (4.5.1)

We work in principal coordinates of Sji and take

u. = r. (t) x.. (4.5.2)

Recall that Greek indices are not summed. The RDT coordinate transformation is

•cx = :a/ea " = t (4.5.3a.b)

where
Ca= exp (fo, r. (te)de' (4.5.3c)

is the total strain in the a direction. The transformed vorticity equation is

aw, = ewTr-_ = (4.5.4a)

where

. - o (4.5.5a)

r0 = r, + r 2 + r 3. (4.5.5b)

The solution of (4.5.4) is
W.(X, T)- ,0, oX')W (4.5.6)

where

E= exp (f t f.(t')dt) (4.5.7)

- - - .
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is a modified total strain in the a direction. This result clearly sho'% the essence of RDT; it computes
the change in the turbulent state by considering •he rapid vortex streching ;;'Dosed Ly the mean field. The
velocity field can be deduced from the vorticity field. In the transformed coordinates, the Poisson equation
(1.9.5) for the velocity gives

ý2U, W 8W31 I (4.5.8a)
496 C3 aC2 C2

where the transformed Laplace operator is

t2 1 92  1 32 1 a2

C2 eC-' 2-- + C2aC3  
(4.5.8b)

The equatiops for w2 and w3' can be obtained by permuting the indices. The solution is obtained using
Fourier expansions,

:(x, 6) = Zi(.,r)C."S" (4.5.9a)

u:(x, r) = • t,(_, r)c (4.5.9b)

The solution for fi is
i(tCA 2 /C 3 - 1C2 W3/C2 )

•2 (4.510)

C e 2  e3
The other components can be found by permutation of the indices.

The velocity sp-ctrum function Eli is related to the vorticity spectrum function H, by

Ell (t,r) =()H 22(5,0) 2 () 2H,3 (j5, ) - 2(1;)(j)H2 3 (6,0) (4.5.11)
[!L2+ (E2)2 + (ýS)2]2

From the solution for the vorticity evolution (4.6,6),

H•r, (N, r) = H0r (_n, 0)E. ip. (4.5.12)

If we assume that the initial turbulence is isotropic, the initial vorticity spectrum is given by (3.7.23),
with k replaced by n. Using this spectrum and (4.5.12) in (4.5.11),

SE(,) (E(,)")2 - 'Ex) +e3(3)-- - ."2 - ,cC) + 3 (4.5.13)
47rI.2 [(EL~)2 +(ýn)2 +(!n)2J

The spectra co .. and E3 3 can be found by permuting the indices.
The Rey stresses can now be calculated by integrating Ei, over all wavenumbers (see 3.4.6). The

integrations :.re nost easily carried out using spherical coordinates, and can be evaluated in closed form for
a few very simple cases, such as isotropic compression. However, the general case of inotational strain can
be handled by power series expansion in the total strains. In (4.5.3c) we expand

S= exp(a) = 1+ a,. + ,2 .(4.5.14)

The integrals are then expressed as power series in the a,, and evaluated in spherical coos 3inates, wlere the
angular integrations can be carried out analytically. The x integration produces q2/3, the initial isotropic
valu- of R11. Using this approach, the Reynolds stress R4i, dissipation tensor Dii, and '-orticity Vl "
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were evaluated by the author and Moon Lee (Reyi.olds 1983) to O(a 2 ). Subsequently Piomelli used the
symbolic manipulation program MACSYMA to extend the Reynoids stress (the most important quantity
for turbulence modeling) to 0(o 5 ) (Lee, Piomelli, and Reynoids 1986). The results are :-s follows (the other
components car be found by permuting the indices):.

" - Yo + 3aa+ -48aa 1 - 32a2 + 12a2 + 48aa 2a3 - 8a3 + 48aaa 2 a 3 )
[ is105 ' ' 315' 0

-(3')a4 + 32as - 48a^ - _ 128a~a2 - 3a~ala2a3 + 36af - 32a a2 a3 + 16ac])
3465 1 0

l'2"21 (244aO 1440aoaj + 33C0a -1 - 4320n>: - 2488a5 + 1200a a2 a3 + 7600aoiaa 2 a3 + 4320aoat

Sa2 3 - 880aoa~a, + 5200aIa 2 a3 + 560ala2a2) + 0(ar)J (4 5.15)

D = 2co a, + Tao(+2)] (4.5.16)

Vi =I I + 2ci - ao + 0(a2) (4.5.17)

6 = to[1- lao + 0(a2)] (4.5.18)

a;a.) + 184 3 24 24 22

(al * *2 ) + +)

3---- (196819a5 s + 25189a, 42 a 2 - 479453aI a~aa) + O(a*) (4.5.19)
23648625

where the Rey,.1ids stress anisotropy tensor is

b_ - q92.,/3 (4.5.20)

and the anL-o'tropic strain components are

4 = a, - (4.5.21)

Note that the anisotropy tensor b,- is depends only or, the total anisctropic strain, and is independent of the
strain-rate history. These results are use-'ul in turbulence modeling where one seeks to develop models that
will be consistent with RDT when the RDT approximations are applied to the model.

4.6 Combinations of strain and rotation

The general RDT problem for homogeneous turbulence involves combinations of strain and rotation, for
which a general solution can be developed in symbolic form (Cambon 1981). Using the Fourier expansions
(4.5.9) and a similar one for the pressure, (4.2.5c) is first solved to express the Fourier coefficients of the
pressure in terms of those of the velocity,

-ý 2ixRk~A,,1=- 2ij•A (4.6.1)

P I= CnImBmpBnpU(6

Then, the Fourier expansion of (4.2.5a) gives

--- -- 2,k B,"Ic BqP Ap i= H_ a . (4.6.2)
-ar p + ICnr-mBm. B,, A* u
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Following Cambon, tl:e solution can be expressed using Green's functions,

,,(,, r) = CGk(_, ,)2k(r 0) (4.6.3)

where the Green's functions are given by the solution of

8GA(3 r) = Hk (6,7)Gk,(_,( ) Gqy(&, 0) = 66. (4.6.4)

This allows the spectrum tensor Eq to be expressed in terms of the initial spectrum,

E = Gip•(•jG;q(6, T)Epq(-, 0). (4.6.5)

The Reynolds stresses are then simply integrals of the spectrum function over all N.
This method of solution is instructive for looking at the sructure of the s.olution, but the calculations for

the Reynolds stresses require approximate evaluation of the integrals, for example by power series expansions.
Moreover, when the principal axes of the strain rate vary with time the Green's functions are not easily
obtained, except perhaps as power series in time. If one is going to resort to series solution, a direct solution
by power series in time is simpler. We will develop this here for future reference.

A superscript summation convention aids the analysis. We denote a series by

A A A(n) tn = A (nt". (4.6.6)
n=O

Any repeated superscript or power is summed over all possible values. The delimiters on the superscripts
establish the range, with ( ) establishing a lowest value of 0 and [ I establishing a lowest value of unity.
Muliplication oi two series and sorting out of powers of t is then very easily accomplished. For example,
simply replacing n by r - m in the product below collects the coefficient of t',

AB = A(n)tnB(-)t = A("') B- m)t. (4.6.7)

Here the delimiters correctly establish thit the m summation in the coefficient of tr is from 0 to r. The
leading coefficients can also be extracted,

A(-- -)B(-) = A (r)B(°l + A1 °)B(') + Alr-mIB1 '•I (4.6.8)

where the m sum at the end now ranges from I to r - 1.
We treat a general case of arbitrary strain and initial rotation as applied to initially isotropic turbulence,

and express the velocity gradient tensor A,k (see 4.2.1) as

Ai~)= Sik(t) + 14k,J),(t. (4.6.9)I2
The strain-rate history described by S,, (t) and the initial rotation described by 11, (0) will be arbitrary, and
the rotation history is governed by (3.1.1).

Expanding,

A,, = Ain) tn B (n)tAs-"ik BA Bsk

,,nst p p (n) tn. (4.6.10)

The coefficients thon are generated recursively. FRom (3.1.1)

( + I)n +,) ,, - , S . (4.6.11)

S. . . . . . . . . . . . . . . . . . .
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From (4.6.11) A~Q = + 1

-Ek22 ;sq q (46.•

From (4.2.4)
(r-- 1)B(r+') = _A(r-)B() B(0  6.k. (4.6.13a, b)

The Fourier representation (in stretched space) of (4.2.5a) gives
(r + 1)O•+'> -u A,(-•-•,, + 5ickp'-•Bk,'.

p (4.6.14)

The continuity wondition (4.2.5b) gives
,k~(r-q) -1 0.Kk- oi(,- , -q =0O (4.6.15)

The Fourier representation of the Poisson equation (4.2.5c) gives

_ - - - -*c('- Ak'".-r (4.6.16)

Extracting fhe leaaing pressure term given by r = 0,using (4.6.15b),

- 1l i B' .+ 2i qk-Brl(A r-s)ii (4.5.17)
P P Ms J

where the notation lirl forces r > 0 in the sum.
The procedure is now very simple. At each order r, one finds the rotation term from from (4.6.11), the

velocity gradient term from (4.6.12), the transformation term from (4.6.13), th. pressure term from (4.6.17),
and the velocity term-. fLom (4.6.14). Th- spectrum censor is exprer.sd as a similar series expansion, and its
terms are generated and integrated in spherical coordinates to calculate the Reynolds stres3es, much as in
the preious section. This is a natural task fcr a symbOlit manipulator like MACSYMA. The result would
enable the determination of all unknown coefficients in the model for the rapid Pressure strain term (see
Chapter 6); we are attempting to carry out this evaluation.

4.7 Two-dimensional turbulence
RDT of two-dimensional turbulence is useful for testing the range of performance of turbulence mod-

els. Stanford student Laura Pauley carried out an RDT analysis oi initially axisymmetric two-dimensional
turbulerce for three-dimensional irrotational strain along the principal axes of b,,, with b22 = -1/3. Her
results are

reslt ar 2f= + [a, + 2a2 + eal + [(a~ + a) + ja3 +2a 2 (ai +&a2

2 L2]
+[- llz a:-!2 11 2 101s 23 ).2a

a -3 a -- aa a-& +a +- a12a0a3l+2 (al' -t- a2+a3x +O(-,) (4.7.1)
24' 8= 1 45 2 3_

S[1+ (a - a3) + !(aa3a - aaa)+ O(a4)] (4.7.2)

where the total strain in the Oh" direction is ei = exp(ai), a2 = a2-Co and ;o = a, +a2 i-as. Note that strain
aligned with the vorticity does not affect the anisotropy, and that changes in anisotropy do not cccur until
third ordr " would be inmtructive and usefu! to ext-nd this analysis to more general 2-D cases including
rotation. :,rain not aligned with the principal axes of b6i.

it
iC
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5. MODELING SCALE EVOLUTION IN HOMOGENEOUS TURBULENCE

5.1 Introduction

This chapter and the next are devoted to one-point raodels of homogeneous turbulence. Here we deal
with modeling the evolution of the length and time scales, assuming that whatever must be known about
the tensor character of the turbulence can be generated by an anisotropy model. Anisotropy modeling is
addressed in the subsequent chapter.

The turbulent kinetic energy equation provides the equation for the turbulence velocity scale o2 . For
homogeneous turbulence (2.6.2) becomes

(q2) = 2(P - e). (5.1.1)

If the other model scale variable is e, this equation is closed. Alternstively, if one choses to use a time scale
variable r instead, a model relating e to r is required. There are many clues that the use of a time scale
as the sccond scale parameter would offer advantages in modeling more general flows. Where it becomes
desirable to think along these lines we will use the lar--eddy time scale identified in Ch.pter 3,

q 2 ,- = --. (5.1.2)1

Following the most popular current trend, we shall start by using a model equation for v as our second
equation. In homogeneous turbulence (see 3.6.4) 6 -= vW2, and so the (j2 equation (2.8.12) yields the e (care
must be talken to account for the density change when introducing v). For homogeneous turbulence with
p = p(t) and u = constant the result is

S= 1 -. . . . , - _-_ (.13
=2vw,'w'S - -eSkk + 20,s,•w, + 2v'w'j.s' . - 2vz

2w' W' (,

where

SY.= sIe AS

is the anisotropic strain rate. The last two terms provide the means by which e changes in isotropic turbu-
lence. In addition, we see that incompressible strain, isotropic volume change, and rotation wiql also modify
the evolution of e. We shall address these issues separately.

5.2 Decay of isotropic turbulence

With no production the energy equation gives

4' = -2c (5.2.1)

Assuming that one can make a model using only q2 and e as variables, the form of the e equation for isotropic
turbulence can be deduced by dimensional analysis,

£2
S= 2 (5.2.2)

where the coefficient Cao can depend on the turbulence Reynolds number (see 3.2.2) RT -= q'/(f'). This is

the form used by all models of this type.
Insight is obtained by recognizing that the right hand side of (5.2.1) comes from the difference of the

last two terms in (5.1.3). The first of these is the turbulent vortex stretching term, which is related to the
derivative skewness by (3.10.9). The last term can be written as

2-,. = 2.,2 AE(k)d (5.2.3)

which shows that it is dominated by the smallest scales of motion and hence should scale on the Kolmogorov
variables. It can be estimated using the model spectrum of Fig 3.9.4. Using the e two estimates for isotropic

S. . .. . . . . . ..-
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turbulence, put in terms that resemble the model equation (5.2.1), one finds that both terms scale as %R,
and

L5g [si 3/2 3o- ± 6/2\/1 62Si = vlR- 'r- 1o\ a jq (5.2.4)

Experiments clearly indicate that a constant coefficient Co does a very adequate job at high Reyno1P.
numbers, which means that the difference in the two terms within the brackets in (5.2.4) must decreas. as
I/V'yR. Both terms are very large and they are nearly in balance (an estimate of the skewness can be m.-le
from this balance). It would be unwise to model these two large terms separately when we only need their
difference, and for this reason the two are lumped together in (5.2.2).

The value of C,0 can be determined by fitting the energ) decay rate for isotropic turbulence to that
measured experimentally, and this is what most modelers have done. The exact solution of the q2 and e
model equations is

q2 = qo2(l + t/a)-" e = co(I + t/a)-(P +}' (5.2.5a, b)

2 2
a -° = (C= - (5.2.5c, d)S=2eo (C~o - 2)

The subscripts 0 derote initial values. The best experiments suggest n should be in the range 1.1-1.3. At low
Reynolds numbers, where the turbulence is in its final period, n = 5/2 is found theoretically and confirmed
experimentally.

The model spectrum (3.9.4) can be used to find n (Reynolds 1976) by assuming that the spectrum is
permanent below kL, i.e. that the low wavenumber spectrum parameter A is constant. Expressing e in
terms of q2 and A using (3.9.5) and (3.9.6), then using this in (5.2.1) to find the q2 history, one obtains
(5.2.4a) with n = (2m + 2)/(rn + 3). This clearly supportes the idea that the low wavenumber part of the
spectrum affects the energy decay rate. The k4 spectrum (mn = 4) gives n = 10/7, which is really too high
to fit the beit experiments very well. However, the k2 spectrum, with m = 2, gives n = 6/5, in quite good
agreement with experim its. In a finite4ourier series representation, the assignment of the same energy to
each low wavenumber Fourier mode would make E,, independent of k and hence E(k) vary like k2 , and so
k 2 turbulence can be thought of as being equipartitioned at low wavenumbers.

With n = 6/5 as suggested by both the experiments and the k2 spectrum, C0o = 11/3, and this is the
value that we prefer. It is very close to the value of 3.84 used by many k - e modelers.

5.3 Isotropic compression

For isotropic turbulence, R, = q2 6,i/3. Denoting Skk = 3r (see 4.4.1), and assuming isotropic volume
change with p = p(t), the energy equation (2.6.2) reduces to

-2e = -2rq2 - 2e. (5.3.1)

The e must be modified to account for the change in volume. The exact e equation (5.1.3) suggests that this
modification might be

€2

4 = -Co 5- - er. (5.3.2)
q2

For very large r the solution- to the above equations are

q2 = q2€-2rt (5.3.3a)

e = eoe-rt (5.3.3b)

The energy development matches RDT (4.4.9). If we assume that the integral scale is proportional to q9/e,
the large-eddy length scale, then according to (5.3.3) the length scale varies as exp(-2rt). This says that
expanding the flow volume will reduce the length scale, which should bt disturbing to anyone and is not in
agreement with RDT. Nevertheless, this modification of the e equation was used for some time in i.c. engine
modeling before the problem was noted (Reynolds 1980).
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The RDT analysis suggests instead that the e equation for this problem should be

= 
2  4

S= -CoL. - ! •, (5.3.4)

For rapid volume change this produces a = gee-4rt (5.3.)

for which the length scale varies in proportion to the strain, i.e. as exp(rt).
This example points out the pitfalls of using the exact equation for a as the basis for its model equation.

To paraphrase Saffman, one should model the Physics and not the equations.

5.4 Rotation

Experiments and numerical simulations show that rotation does not appreciably alter the anisotropy of
isotropic turbulence. RDT (section 4.6) showed that rotation does not affect much of the spectrum at all,
but does tend to produce a slow growth in the energy of the two-dimensional component of the t :rbulence
aligned with the axis of rotation. The simulations (Bardina et al 1985) reflect this growth as a charge in
the integral scales, with the scale in the direction of the rotation axis becoming longer than the other two as
time passes. Rotation also reduces the dissipation rate, apparently by inhibiting the energy transfer cascade.

Most turbulence models in use today show no effect of pure rotation on c, a weakness that has been
slow to receive correction. Bardina found that his large-eddy simulations and Wiegland and Nagib's (1978)
experimental data could both be predicted extremely well using a simple modification of the e equation,

.. . - Cnaefl (5.4.1a)

where fl is the rms rotation rate
n= V . (5.4.1b)

Bardina found that CO = 0. loiv ,. -1 "ll. and we adopt this value.
The imposition of a mean strain-rate provides a source of turbulent kinetic energy through the turbulence

production term (2.6.3). We assume that the anisot opy part of the turbulence model will produce R,-
values given q2 and e, hence P need not be modeled. Thus, no modeling for the q2 equation is required for
homogeneous turbulence.

The associated changes in the dynamics of e must be incorporated in the e model equation. To date
the most effective means for doing this is to add a term proportional to P,

6
2  

P
= -C.o q -2"- C.0cf, + C.,q2 (5.4.1)

An estimate of COp can be made using the homogeneous shear flow data of Tavoularis and Corrsin (1981).
Homogeneous shear flow apparently reaches an equilibrium structure in which the Reynolds stresses all scale
with the turbulent kinetic energy. The energy and dissipation rate both increase with time in a manner that
keeps the turbulence time scale very nearly constant at a value set by the mean shearing tate r = dUi/dz2.
The equation for r, derived from (5.1.2) using (5.1.1) and (5.4.1), is

S= (Cro - 2) + C. Ofr - (C.p - 2)C. (5.4.2)

The experiments gave rq 2 /e = 12.7, corresponding to fIr = 8.98, and P/e = 1.8, Using Co = 11/3 and
C,n = 0.15/A/2, a constant value of r requires Cp = 3.45. This is somewhat higher than the value that
Bardina recommended, which was based on his large eddy simulations of strained flows.

Most k - a models used today do not include the CQO term. For plane shear flows the rotation term
and the production terms have the same form, and when these terms are into a single term expressed as in
the form of the production term the resulting combined coefficient based on the above coefficients is about
3.0, which is very close to the value of 2.88 used in many k - e models.
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5.5 Proposal for a simple k - r model

Compared to the e equation (5.4.1), the r equation (5.4.2) is impressive in its simpli~ity. When one
examines models for inhomogeneous turbulence, q2/e frequently appears, suggesting that the time scale

t might be preferable to e as the second model variable. The choice should be based on the ease with which
the model extends to new situations. The diffusion terms required for inhomogeneous flows are particularly
useful in evaluating various proposals.

For example, consider what happens to the terms in the e equation near a solid boundary. The s'/q'
term goes to infinity, but the Pe/q 2 te-m goes to zero. Consequently, a great deal of effort has been spent
inventing near-wall patches for these terms. One does not excape these simply by changing variables, unless
a slight modification is made. In contrast, Wilcox (1986), who uses a reciprocal time scale in place of e,
achieves reasonabie near-wall solutions, even in the viscous region, with no near-wall modifications of his
model equation.

Two-equation models have been criticised because the length scales arc anisotropic in anisotropic tur-
bulence but the model assumes isotropy of length scale. The success that two-equation models enjoy would
seem remarkable in the light of this objection. But suppose it is really time scale information that is carrie'd
by e, and that the anisotropy of length scales is reflected by anisotropy of R-i.

Another clue is provided by the case of isotropic volume change, for which the r equation is

i = (C.0 - 2) - kk. (5.51

Note the appearance of the strain rate term.
It is suggested that it might be better to replace the production term in the r e!quation by a term

proportional to the rms strain rate. Some additional simplicity of form is obtained by using the kinetic
energy k = q2 /2 and redefining the time scale and turbulent Reynolds number by

S= k/c kA = kf/ii (5.5.2a, b)

The model equation proposed is

Cfo + C 0flF - Cs.Sf - 'Skkt. (5.5.3)
3

Here S* is the rms anisotropic strain rate

S' = VsiS-i (5.5.4c)

determined from the anisotropic strain rate tensor

Si- = S., - 1skkk- (5.5.4b)

Note that none of these terms is ill-behaved at the wall, and so there is hope that the near-wall modifications
can be much simpler. The sonstants for this model, evaluated in the same manner as those in the e equation,
are

Cfo = 5/6 U = 0.11 Cvs. = 0.69. (5.5.5a, b,c)

Exploration of this idea is encouraged.
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6. MODELING ANISOTROPY IN HOMOGENEOUS TURBULENCE

6.1 Description of anisotropy

The scale equations developed in the previous chapter are closed only for isotropic turbulence. In
general, the Reynolds stress tensor must also be determined by the model. The Reynolds stress anisotropy
tensor

b = Ri.' - }q•,(6.1.1)

2

is a very convenient way to describe the deviations from isotropy. This chapter deals with b,3 and its
modeling, which must be done with great care if unrealistic predictions are to be avoided.

The anisotropy tensor has some important properties that need to be kept firmly in mind. By definition
it is trace free,

6,, = 0. (6.1:)

It is often convenient to think of b,, in its principal coordinates, where only diagonal elements are non-zero.
By (6.2.1) the sum of these principal val'ses is zero, so only two are independent. This means that the
anisotropy can be characterized by two independent invariants,

II = -b,3 b,,/2 III = b,.bjkbk,/3. (6.1 3a, b)

If the turbulence is two-dimensional, meaning that one (principal-aaxis) velocity comvonent is always
zero, by the definition (recall Greek indices are not summed)

býa = -1/3 if Raa = 0. (6.1.4)

And, if all of the energy becomes concentrated in one component,

b. = 2/3 if Ra. q2 . (G.1.b)

This is called one-dimensional turbulence. Note that the one non-zero velocity component could be a funccion
of the other two coordinates, say u• (X2, z3 , t), so that the flow would resemble a honeycomb of opposing jets.

Thus, the possible values of the two independent principal b.a, say bl, and b2 2 , must lie within the
triangle on Fig 6.1.1. The vertices correspond to the three possible states of one-dimensional turbulence,
and the sides to states of two-dimensioal turbulence. The isotropic state is the origin. The diagonal lines,
along which two principal componznts are the same, are states of axisymmetric turbulence.

(-1/3,2/3)

b,22

"*1b1

(-113,-1/3) (2/3,-113)

Figure 6.1.1 Range of possible principal values of the anisotropy tensor
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Note that one can either move along an axisymmetric line away from isotropy to a two-dimensional state
(edge) or to a one-dimensional state (vertex). These limiting cases may seem extreme. However, turbulence
near a wall is two-dimensional (the normal component vanishes), and turbulence in a strongly sheared layer
moves remarkably far towards one-dimensionality.

In homogeneous turbulence, the move towards a two-dimensional state is made by straining the tur-
bulence in one direction and contracting it equally in the other two. This stretches vortex filaments in the
direction of positive strain, aligning these filaments with the flow and thereby reducing the fluctuations in the
direction of positive strain. This is what happens to turbulence when it is passed through an azisymmetric
contraction.

The move towards a one-dimensional state is achieved by straining the flow equally in two orthogonal
directions, and contracting it in the thiird, as one could do in an axisymmetric diffuser (using boundary
layer suction to prevent separation). The vortex cores are stretched out to form sheets (pancakes) and the
limiting one-dimensional case corresponds to a honeycomb of two-dimensional vorticity. We will call this
type of deformation axisymmetric expansion.

An equivalent and less specific way to characterize the anikotropy is through the anisotropy invariant map
introduced by Lumley. For axisymmetric turbulence we writa the anisotropy tensor in principal coordinates
as °

as 
= ( a O 0 '\b 0 0 a 0 . (6.1.6)

0 0 -2a)

Then
II = -3a

2  
III = -2a 3

. (6.1.7)

Along lines where a < 0 so that the component along the axis is more energetic than the other two (axisym-
metric expansion),

III= +2 (-•3II)3/2 (6.1.7a)

while if a > 0 so that the axis component is less energetic (axisymmetric contraction)

III = -2 (:,). (6.i.7a, b)

The two-dimensional boundaries can be studied in principal coordinates, writing-' 0 0a,;= -o ( 6.1.8)

Then

L2 III = a2--I (6.1.9a,b)

so that it for two-dimensional turbulence

= 1+ II+ 3III = 0. (6.1.10)9

Using these results, the range of possible turbulence states is shown in the invariant map of Fig. (6.1.2).
The origin is the isotropic state, the upper boundary is the locus of two-dimensional states, the two sides
are the two types of axisymmetric states, and the upper vertex is the one-dimensional state. The anisotropy
invariant map is a very useful way to characterize the state of turbulence :n modeling, simulations, and

experiments.

Two tensors that can be formed from the anisctropy tensor are ts square,

b.= bkbki (6.11)
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and itb cabe, bi--bnbnmbm-. (6.1.12)

The Cayley.Hamilton theorem of linear algebra says that a matrix satisfies its own characteristic equation,

which in this instance means that

or alternatively
b 2 k 1 b + 6 (6.1.13b)

Hence, bPi, and all higher powers of the tensor, are linearly dependent on the lower powers and hence do

not contain new tensorial structure beyond that in b6., 6b,, and 6,i. As we shall see, this is very important

in turbulence modeling. Readers not familiar with this important theorem may find it instructive to verify
(6.3.13b) by writing bjj in its principal coordinates, carrying out the products using the trace-free condition

to express one of the principal values in terms of the other two.

(2/27,1/3)

one-dimensional turbulence

,.•(-1/108,1/12) •L--,axisymmetric expansion

axisymmetric contraction

0 *

Figure 6.1.2 Anisotropy invariant map

6.2 Evolution equation for the anisotropy tensor

Using the evolution equation ior R,, (2.7.1) and the definition of b,,, the equation for evolution of hF
in homogeneous turbulence wit,, p = p(i) can be written as

ýS,6 - (b6kS.. + bkS;, -+ 2b..n-mS bi.,

+(bink-f + b-kfl,) + [fr, - (De - (6kk2.1) + -b,(
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Here S is the anisotropic swrain rate tensor defined by (5.5.4). Note that only anisotropic strain produces
Reynolds stress anisctropy, and that the righL hand side is properly trace-free. The terms containing the
mcan rotation tensor fl,/ represent a kinematic rotation of the anisotropy tensor. When used in conjunction
with q2 and e equa.ions, models for the pressure-strain term Tii and the anisotropy of the dissipation tensor
Di, must be provided.

There is a class of turbulence models called algebraic two-equation modols in which it is assumed that
the turbulence structure has reached an equilibrium stat. determined by a balance of the terms on the right
hand side of (6.2.1). For example, the standard k - c model uzes an algebraic equation equivalent to

b--.- C, S (6.2.2)

with C• = 0.09. A problem should be immediately apparent. The sudden imposition of a strong strain
could easily produce b~j states lying outside of the anisotropy invariant map. This is a very serious potential
problem when such models are applied in new flows.

Another weakenss of this model is that it assumes that the principal axes of stress and strain-rate are
aligned. This is not true in the most important engineering flow, namely shear flow. However, the constant
Cm has been set to give the right anisotropy of the shearing stress. For example, in the homogeneous shear
flow experiment of Tavoularis and Cornsin discussed in section (5.4), 612 = -0.149 is predicted by (6.2.2), in
excellent agreement with the measurements. However, the model predicts b1 = 0, whereas the experiments
show bil = 0.196, so the normal stresses are badly in error. However, they do not play a significant role in
determining the mean velocity field, and so this error usually of little consequence.

Algebraic models assume that the turbulence structure responds instantly to changes in the imposed
mean strain. This is reasonable for computing the slow evolution of mean fields, biit not satisfactory if the
strain rates are large, i e. if S'q 2/e > 0, where S* is the rms anisotropic strain rate. And algebraic models
predict instant restoration of isotropy after the removal of an applied mean strain-rate. Hence, if one wants
to have realistic predictions of the Reynolds stresses in these cases, a model of the b,, evolution equation be
solved in parallel with the q2 and e equations.

In the balance of this chapter we review the formal methods that have been applied in attempts to
develop rational models to close the bii evolution equation. Then, at the end we will present a much simpler
mode! that achieves some of the objectives of the more complicated models at much less exoense. This new
model might be useful for engineering analysis.

6.3 Decomposition of the pressure-strain term

The Poisson equation for the fluctuation pressure (2.6.1) has t%o terms on the right that act as sources
for pressure fluctuations. The source involving the mean velocity gradients will change instantly when the
gradients change, resulting in an instant change in the fluctuating pressure field and hence an instant change
in the pressure-strain term Tip. The source involving only the turbuience will change only as the turbulence
adjustes to its new cc nisitions. This suggests that the pressure fluctuations be split into rapid and show parts,

p,_ (1) + p(2) (..n

where the rapid term is the solution of

-p ,M. = -2u,, Ui,, (6.3.1b)
p

and the slow term is the solution of

i 2J&ý-2j.,, ul,,j +2u,,i u,,i.- (6.3. 1c)
P

The resulting contributions to the pressure-strain term (2.7.5) will be denoted by T{) and TP), respectively.
Eqn. (3.6.1b) is linear and has constant coefficients in homogeneous 'urbulence, and so can be solved

by Fourier methods. We follow the approach of Chapter 3, and write

"Ih
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p(Z}= (k)e"k'x tu = Z i(k)e-k x. (6.3.2a,b)
k k

The time-dependence of the coefficients is not explicitly expressed because we are solving the Poisson equation
at one instant of time. The solution of (6.3.1b) is then

S-2= ,, -.- u, (k). (6.3.3)

Multiplying the pressure fluctuation series oy the the velocity gradient series, using the conjigatc
symmetry properties of the Fourier modes, averaging over the box of Fig. 3.3.1, then taking the limit
as done in section 3.3, one finds

P(,;= 2U),, M, (6.3.4)
p

where

V , (6.3.5)

The rapid pressure-strain term is the sum of two such terms,

T(' = 2t'p,, (MiJi + M5 1,,). (6.3.6)

Modeling of the rapid pressure strain term therefore becomes a task of modeling Mfp,, which we address
in the next section.

6.4 Modeling the M,jpq tensor

The Miipq tensor has been modeled in various ways, all relatively simple, usually with one constait
being adjusted to fit data for the predictions of a selecti'n of flows. Here we introduce a very different
approach; we arge that the anisotropy model, when applied in circumstances for which r.,pid distortion
theory would apply, should give results consistent with RDT. The RDT form of the model equation includes
only the rapid pressure strain term, the p~oduction term, and the mean rotation term in (6.2.1), -xactly
the same terms used in RDT theory. The solution above for the rapid pressure field is exactly the same as
used in RDT. Therefore, in principle it should be possible to determine all, of the coefficients in the rapid
pressure strain model (i.e. in Mijpq) so as to make the anisotropy predicted by the model equation under
RDT approximations exactly the same as that predicted by RDT theory, for an arbitrary rapid deformation.

Following Shih and Lumley (1985), we begin by writing the general expression for a tensor M,,p, =
Mi.pl/q2 that is assumed to be a function of the tensor bi., with the syr.mmetrier in indices required by the
definition. This is

Mi.pq = C 1 6,3 •6p + C 2 (GIp6&-5 + 6,q6jp) + 0 3 6,,ibpq + C4
6
pqbi., + Cs(6,pb,5 + 6,+b3 p + 8jpb,q + 

6
jqb,p)

+C6,,b + 76P b2 + & b2 2+6Y 2)Co.bp
+I C7pqj + C's(Spbý + 6qp+6jpb~q+&5 bp 'bp + Cio(btpb.q + b,,5b3 ,)

+Clb bb2 2 b2b~ 2b 5
+'Cibijbpq + Ci2bplb j + 13(b, + b,5 b + bj-b? + byqbp) + CI4b•,bpq + Cis(bt5$4 + b, bsp). (6.4.1)

Because of the Cayley -Hamilton theorem, higher powers of b., are not required. The coefficients C, - 015
zaay be function of the invariants II and III, and of other scalars, such as RT.

The continuity (2.3.4) equation requires M,,,,= 0. When this condition is applied to (6.4.1). .n
equation containing 6

jq, bja, and b24 is ob'tained. Since these are independent tensors, the coefficient of each
must vanish. This produces three equations,

C + 4C. + b bkCs + lb~k(CI1 + C1 2 + 2C 1 3 ) = 0 (6 4.2a)

C3 + C4 + 5 5 + ]b~kk(Clm + C12 + 4C,3 ) + ýbkk(C14 + C15 ) = 0 (6.4.2b)

I ____
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"Ce + C7 + 5sC8 + 0 + C Io + -bkh(Cl 4 + 3C1) =0. (6.4.2c)

Forom its definition, M = 1?,,, so =i. bii + 5,,/3. In the same way, this condition gives three
additional constraints,

4 13C, + 2C2 + bk oe + 3 b3A3= 3 (6.4.3a)
2 3

3C 4 + 4C0 + b2k(Clj + 2C13) + ]bt5 01 6 = 1 (6.4.3b)

3C7 + 4Cs + 2Cto + bkk(C14 + CIS) = 0. (6.4.3c)

These six conditions reduce the number of undetermined coefficients to nine, and ;,ve

2 2 2 2 \b ( 0 1 2

0 1 32 5 + b 15 -L 7 )

k -C 0 1230 _ 1 , 1 1

~kk (-oLC 4  20 /(6.4.4b)

c, 1 -11c , C1 72I1)+b
03~ ~ = k---c k - - + (+ýc 4  'CS (6.4.4e)

C4 = - !Cs +C -;C~ o + b3.

4 2 1 .•s" ( 6.4.4d)

C6 -07 -"- co+bk(-c14 (

Once the coefficients are evaluated, T.(,' can be determined. The rehult, written in terms of the
anisotropic strain rate tensor (5.5.4) and the rotation tensor, is

-" = 2(C, + C2)S*. + (C3 + C4 + 2Cs) S +*kbki + S**kbki - 2Sbmn6..),

2q2 3 )
C+7 2Sk j - 2S*nb0Mn6 +2 CIo)S,, (bigbp -b .b26 + 2CS

+(C11+C012+ 2C8 3)S; b + bqb2. _. 2 3 + 2C.3S - b2  + -3bmn bi 2l3Sbp b? -2Io••tb0k

23 PS9 $

+2(C04 + CIS)S) (b2•bT 5  ,be + 222S;3b6)(b. -,b2

-~~~~~~~ ~~~ C4(kk,+feb~ C 7 (&b,+fabi) + (C11 - C12)flpq(biqbpj + byqbp~j). (6.4.5)

Realizability has been of much concern in modeling the pressure-strain term and other terms in the
Sbi equation. The principal values b.. can not be less than -1/3, and any model that would canry a
principal value below this amount (i.e. outside the bounds of the invariant map) then produces unrealizable
turbulence (nonsense). Truncated approximations to the se:ies above have this danger, although the model
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just dets, ribed, with the infinite set of coeffieients, would be realizable because RDT solutions are realizable.
In order to guarantee realizabilty one ca- enforce certain conditions. There are various ways to develop
theie conditions. Shih and Lumley (1985) get thera by requiring that the Ta, terms must not drive b.. out
uf bounds. This requir.s

up,, AMi. = 0 when b, = -1/3 (6.4.6)

which produces three additional constraints,
1 1 11

C±+C02-;,(0 3.3+C4 +20s)+:(Co+C7+2CG+Co+C, I -,7 C..0 (0.4.7u)

3 9-Cs -c, + • 13 = 0. (6.4.71;

We believe it is preferable to impose the realizability conditions directly on the modeled tensor M,,,. When
the velocity component u. is everywhere rero then 42, = 0 and consequently Ma,,p = 0. In the pzincipal
coordinates of b,, this requires

Mil = 0 M11 22 - M1 33 = 0 M12 12 = 0 when b6, = -1/3 (6.4.8a, b, c)

Using the fact that bkk = -1/9 + b6k/2 on the two-dimensional line, (6.4.8a.c) give

C +2C2 -- (c3 +C4 +44s)+ !(C+7+ 408 -rC9+20.0o)- L(0  i-C2 +4C) + !-(14 +2C15 ) -0

-5 9 ~b - 27'' 2 3 81 (O.4.9u)
1 1 1 1
7C3 + 1(0c - co) - ; -(C,, - 0,") + -C. = 0 ,6. . '

CS + -(Cs - CIo) + -C, 0
6 18 162

, + L- 1 (C (6.4.2d)
C 2 -10 5 + -L+l b2 lC h2o k I-1

6 (18 2 k) 18 (,27 j 6 ± 162 18b Ck 0
When equations (6.4.4) are used to express the lower coefficients, (6.4.9d) is - 1/2 (6. t.9a), and so only three
independent conditions are obtained,

i. + 1 + ( + lb2k)C8 + jbkCs+ I + _L62C. (-L + -Lb)2Cii++02)

+ 13+ CIO)C, + (;k) -(Cl + +.~~)2C~ C 6412a)

2 I 2 1 / 1 )2.,,_L - (b8 -0 -Co - b2+ _Lb

-927- 9 27 T87 kA 18/ +(7 ýbk 1

+ ~81 27 G,}1 43 17 (..lb

CS + L(08 - CI0)+ - •,o = 0 (6.4.1oc)

When these are satisfied, the Shih-Lumley conditions will also be satisfied. It is important to realize that
these realizability constraints apply only when the turbulence is two-dimensional, i.e. only on the line G = 3
that forms the top boundary of the invariant map.

The equations abov-e suggest that the coefficients will depend on the invariants and not simply be
constants. We might expand each coefficient as a power series in the invarints,

c. ,.-o) + b,2 , 2 ) + b25 C+b 3 ) + 3 )+ 2 C,-4) + b sbk (5) + (b ,-)2 C! . (6.4.11)

N
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We see that the first app-oximationt to the isotropic coeffici- its 'I, and C2 are already known, and the firn
approximations to the linear coefficients Cs-Cs are determined by the first approximation to Cs.

Most turbulence models presently in use include ,rnly the terms in Mspq through C5 (the linear terms),
employing constant values for the coefficients. But with C6-CIS = 0 no single value of CS can satisfy all
three realizability conditions (6.4.10), su these lineai models do not satisfy realizability

The simplest set of coefficients satisfying realizability i6 obtained by truncating M,1i 5 to 0(b 2 ) and
assuming all coefficients are constants. The truncatiomt gives

C1 1 = C12 = C13 = C14 = CIS = 0. (6.-4.12a)

From (6.4.4a,b), the coefficients C, and C2 will be constants only if CS = 0 and CIO = -3C 9 . Then, the
realizability condi,,ons give

C = 2/5 C2 = -1/30 C3 = 1/30 C4 = 7/i5

Cs = -1/10 C7 = 2/10 C9 = 1/10 CIo = --3/10 (6.4.12b)

These are the coefficients determined in a slightly different manner by Shih and Lumley (1986). Under the
rapid distortion approximations, the time-series solution of the model equations resulting from (6.4.12) match
RDT of isotropic turbulence only to 0(1). The model also predicts that anisutropic turbulence subjected to
pare rotation would undergo anisotropy changes, in excess of those caused by the kinematic rotation terms,
of 0(:), whereas RDT indicates that this excess change must be an even power series in t (see section 4.3)
and hence should noc appear until 0(t 2 ). It would seem desirsble to obtain a better match to RDT.

Under rapid pure rotation of anisotropic turb,,lence, (6.4 .S) will produce an 0(t) change in bi in exce-e
of that produced by the kinematic rotation terms unless (C01) - C•)) - 0. This condition gives

C(0) = -2/7 C010) 
- C(O) ) 5/7. (6.4.13)

With these values, the RDT-equivalent model predicitions also agrees with RDT to 0(t) for all trrotational
strains (Reynolds 1983). Le Penven and Gence (1983) carried the analysis to one additional order in t for the
C-asc of irrotational strain At a constant strain rate, and found that the coefficients could indeed be matched
tc 0(t 2 ). Hence, it .eems clear that (6.4.13) gives the rational choices for the first Approximations to the
linear coefficients. However, with CS = -2/7 the realizability conditions can not be satisfied by a truncation
of MilN to 0(b 2 ), and one must include higher-order terms to effect realizability.

It seems clear that continued matching with RDT w 'd determine all of the coefficients, and since
RDT predicts realizable turbulence the iesulting model would guarantee realizability. The RDT required for
a complete matching must be sufficiently general to allow all coefficients to be determined. The arbitrary
irrotational strain analysis given in section (4.5) is not sufficient because there the principal axes of Sy were
fixed and hence the principal axes of Si, and b,i always remained aligned. An RDT for of isotropic turbulence
with arbitrary initial rotation rate and arbitrary strain rate history -- require~d (see section 4.6). It should be
possible to select the constants in the coefficient expansions (4.6.10) to match RDT to any arbitrary order in
a time-series solution of the RDT-approximate model equations, and then to use the realizability conditions
to truncate the expansions, maintaining full realizability. Thus, in principal the rapid pressure strain model
should be determined completely by RDT analysis, with no adjustable constants matched to experiments.
We are attempting to complete this task.

Another approach that may be fraitful is to use RDT for initially axisymmetric two-dimensional tur-
bulence, in conjunction with the realizability constraints, to develop expressions for the coefficients that
must hoid along the two-dimensional line G = 0. The results of section 4.7 should be useful in this regard.
These coefficients might then be expanded in power series in G in order to determine appropriate values
for thee-dimensional turbulence, perhaps by matching to RDT. Many interesting analyses of this nature
remain to be clone in turbulence modeling.

6.5 Modeling the slow terms

The negative of the slow pressure-strain term and the dissipati a ansiotropy term are modeled together
in (6.2.1) as

"" - (D,, - DkA•, /3) = 1 (6.5.1)

Pt
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Assuming that it. possilIb. to model 4',, in terms off,,, a prenyae that is inot supported very we!l by direct
numerical simuAl.ti.nn. thz most gcncai form must be

(,a - 2)b,i + p(b6
2 + lIke,,) (6.5.2)

where the ceeficients a and f6 could he functions of the invariants iI and II and posoiLly of other scalars, such
wq R,,. Under these assumptions, one can in principle evaluate the coeffimients by reference tc experiments
and simulations on the reth-n to isotropy foilowiig re.moval of mean straja rate. in this case (6.2.1) reduces
to

hi, (4,y 2bi.) - - ,i; +(b', -8 Lk000i,)i• (6.5.3)

If the aniisotropy is weal,, a co:itrols the return and must be positive if they ais to be a return.

U-sing (6.5.3), the evolution o." the state pnint on the invariant map is described by the two equations

dll
T -12ora1 - 30i!11 (6.5.4)

(--(3a1 + -i1r•2 ) (6.5 5)
dt q 3

bo that the trajectory on the map is desrribed by

dlI 2aII - 3,1II

dlI = 3 a p1i + fII 2  (6.5.6)

Therefore, if the underlying premise of the model is correct, the trajectories must be unique and the ratio

-,(IT, lIT) = a/fl can I.e determined by ,he local traiec~ory.

There have not been many exper-ments on the return to isctropy. Those that do exist often show very
strange behavior. Direct numerical simulatinns of Lee and Reynolds (1985) using the Rogallo code in a
1283 mush .ttempted to address these questions in the hope of evaluating the parameters. Turbulence that
l1-w been btraincd by axisymmetric contraction relaxed smoothly to isotropy along the axisymmoetric line as
expected. But turbulence that had been strained by axisymmetric expansion showed very strange behavior,
in rome cases moving firtber away from isotropy before starting the return. Turbulence strained by '.omplex
combinations that produced states Pear the middle of the anisotropy map did not show convincingly unique
trajectories. A sample of the trajectories following removal ot plane strain are shown in Fig. 6.5.1. Th.'
points to the left have been strained most rapidly, and the initial states are preducted very well by RDT.
The lowermost points are in general agreement with the one experiment on the relaxation from plane strain
by Tucker and A. Reynolds (1968). Note th,.t one point begins its "return' by going substantially far in the
wrong direction. It seems impossible to incorporate this wierd behavior within the structure of (6.5.2).
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Figure 6.5.1 Trajectories of the return to isotropy from plane strain (simulations)

The simula.ion3 cast doubt on the basic idea of modeling these terms using only the bij tensor. But
the simulations did show that the return of the small-scales to isotropy, as reflected by the anisotr.)py in the
vorticity and disssipation tensors, was quite well behaved and easily modeled. This suggests some directions
for future modeling research.

These simulations, as well of those of Rogallo for homogeneous shear flow, sulgest very strorgly that

Oij - 2bi as JbI - 0. (6.5.7•.

This means that there should be no linear return to isotropy. Careful examination of the very nearly isotropic
data of Comte-Bellot and Corrsin (1966) seems to support this behavior.

Choi (1983) perfomed experiments on the return to isotropy from thi right side of the invariant map,
and did seem to observe more consistent behavior. A fit to his data devcloped by the Cornell group and
reported by Shih and Lumley (1986) is

S= 12.44(9C)2 (I - 9G)
3 14  

0. 0. (6.5.8)

Tho G factors provide a sort of realisability, and thore is no linear return tc isotropy.

S.... v.-S
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A criticism that might be raised about this model is that it does not a.!ow two-dimensional turbulence to
remain two-dimensional, relaxing to an axisymmetric state. It is possible to construct a model that does by
using the reaiizalility condition. When u. = 0 everywhere, then D., = 0 2ý = 0, and hence 2
which will sustain b, = -1/3. Thus, the realizabilicy condition gives

a = + ) when = 0.(.9)
\9 3 /

Sin:e this constraint only need be true for C = 0, wý can add functions of C without destroying realizability.
A linear term suffices, with its coefficient chosen to remove the linear return to isotropy whan G= 1/9 and
II = 0 and to make P vanish for small anisotropy,

a + 21+II- 3G)Po (6.5.10a)

'0 P o(1 - 9,). (6.5.10b)

The model is then

C =- ý-[ + 211- 3G 80bo ++3 (I- 9G) b2 + I12 U). (1.1.11)

With this modAl, for nearly isotropic turbulence (6.5.4) becomes

a. -,6 0 11 (6.5.12)

while for small aniisotropy (6.5.8) gives

a • i'.44(--91I)3/4. (6.5 13)

Matching at -II = 0.05 suggests flo r 10. This mudified model satisfies realizability, restore3 axisymmetry
in two-dimensional turbulence, displays no linear return to isotroy, and gives return rates of the right order
of magnitude.

However, one might suspect that the slightest little three-dimensionality would explcde the turbulence
into a three-dimensional field, so perhaps it is unreasonable to insist on maintaining two-di:iensiorality in
the model. Undecided issues lil"es this provide fruitful grounds for new research, and we are now explorin;
questions like these using direct turbulence simulation.

______
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0.6 A simple anisotropy model

The gap between the eddy-viscosity models used in the simplest k - e models and those discussed above
is immense. There is a need for a much simpler model that would protect engineering calculations from
the dangers of unrealizable turbulence, provide some indications of the trends in anisotropy for unusual
flow situations, and handle dynamic changes on roughly the right time scale, but without such calculational
complexity. The beginnings of such an idea are presented here.

We start with the idea that a large positive strain rate in one direction tends to stretch vortex filaments
in that dihecior, aligning them with the flow, thereby intensifying the perpendicular fluctuation components
and redu:ing those along the axis. In bhe limit of very strong strain rate, the energy in the axial fluctuations
axial will approach zero. The anisotropy model must preven, negative values. And, we know that only the
it anisotropic component of strain produces anisotropy in the turbulence. A simple algebraic model with
this character is

-S•._ (6.6.1)

oA + AsS*r"

In order for realisability to be maintained, baa should approach -1/3 as S . co, for any combinations of
other Si. This requires that the coefficient As depend on the type of strain.

In th! principal :oordinates cf •,, we take .9* as having a large positive value r, and write the
strain-rate tensor as

s = r 1 ). 0 (6.6.2)
6 -2

Note that a = 0 gives axisymmetric contraction, a = 1 gives plane strain, aad a = 3 gives axisymmetric
expansion. Then

s'=r- f+ +'- - a2
s =r 7i +(1±)2 + S'a1 2 -r-3a (6.6.3)

For large positive f our model must yield

1 rr
b-" = ASr (6.6.4)

and this requires that

AS =V F " (6.6.5)

We need a way to represent a for an arbitrary orientation of the coordinates The structure of S,, is
char.rcteised by

(S.,) (6.66)

which for (6.6.2) is

3(1 - a2 )/4
[(3 + a2)/21/2' (6.6.7)

W ranges from -I/Va6 for axisymmetric expansion to /1V6 for axisymmetric contraction. Plane strain and
shear flow correspond to W = 0. Using (6.6.5) to express a in terms of As, and then in turn expressing W
in terms of As, we find

3~ As9 _ 2(6.6.8)
9 2

STh;s allows us to determine As from a known W. Tme relationship between them is shown in Fig. 6.6.1.

S. . . . . . . . . . . .



rl

1-55

•, As
S~3

00

0

'5l

2

0 
0

Figure 6.6.1 Variation of the model parameter with strain type

The constant Ao should be chosen to produce the proper level of shear stress in shear flow, for that
is the most important engineering flow. Shear flow can be represented as a combination of rotation and
irrotational strain. Denoting U1,2 =r,

0 r

2j = r i1 0 0 (6.6.9a, b)

2o5o

1 0 0 1)

Hence, for shear flow W = 0, As = 3/hi, and S = r/v/2. With these values, Ao = 23 produces b12  -0.15
at rr = 12.7, corresponding to the homogeneous shear flow experiments of Tavoularis and Corrsin.

We now have an anisotropy model that is always realizable for all types of strain, and has the right

general trend of b.i with Sj, but assumes that a state of structural equilibrium has been attained. In order
to handle transients, we propose an evolution equation for bi, that would give (6.6.1) as its equilibrium
solution,

i, = -C1 [(Ao + A 5 S' )bi + S,;r]/r (6.6.10)

By choosing C1 = 4/15, the model will agree with the initial phase of rapid distortion of isotropic turbulence,
and the rate of return to isotropy is of the right general magnitude for linear approximations. Note that the
model coiTectly predicts no change in the ansiotropy of isotropic turbulence under pure rotation.

For many engineering problems the main objective of the turbulence model is to reveal important trends
This simple anisotropy model would make the important stresses change in the right general way, without
becoming unrealizable, and therefore it should be an attractive alternative for use in simple two-equation
turbulence models. Preliminary studies by students in the author's turbulence class support this conjecture.
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7. NUMERICAL SIMULATIONS OF TUBULENCE

7.1 Introduction

Over the past decade, two important types of numerical simulations have become important. The
earlier work concentrated on large eddy simulations (LES), in which simple models are used for the small-
scale turbulence and a realization of the large-scale turbulence is computed. The underlying idea is that the
strtcture of large eddies differ greatly from flow to flow (which is why universal models are elusive), whereas
the small eddies are more universal and therefore easier to model. Large eddy simulations have provided
important information for turbulence modeling, and there is now great interest in the development of large
eddy simulations as a tool for engineering analysis. A prominent program in this direction exists in FRance
at the EDF.

It was argued that, since the ratio of the largest to the smallest scales of turbulence varies as Rý./4

(see 3.2.4), it would never be practical to do a significant simulation of all the important turbulent scales.
However, valid direct simulations of turbulent flows at R1 of the order of 100-300 have become possible. This
is the range of turbulence Reynolds numbers in turbulent shear flows with Reynolds numbers, based on the
layer thickness and the driving mean velocity difference, of about 1000, and a number of direct simulations of
channel flows and boundary layer flows at these low Reynolds numbers have now been attained. These direct
simulations provide an important new tool for studying turbulence, particularly because they yield essentally
any data that one might desire. Already they have contributed important new insight into turbulent structure
and have aided advances in turbulence modeling, as well as new understanding of transition physics.

In this chapter we will review the fundamentals and current status of this very fast-moving area of
research, drawing primarily from the experience of the large group working in this area at the NASA/Ames
Research Center and Stanford University. At present this group involves about ten NASA scientists, three
Stanford Professors, a dozen or so graduate students, and some post-doctoral scholars and other visitors,
with the work being coordinated by the joint NASA/Stanford Center for Turbulence Research. Some of the
exciting new things going on in this group will be outlined, with details being left for the authors to report
for themselves.

7.2 Fundamentals of large eddy simulation

In LES one needs a way to define the large-scale components of tl'e fields. and filtering is usually used.
The filtered field f is defined by

7(x,t) f G(x,x'; A)f(x', t)d3x'. (7.2.1)

Here G is a filter function, which determines exactly what fract:'n of the motion is defined as being large
scale, and A is a filter parameter that implements this choice. The filtet function must be normalized such
that

J G(x,x';A)d 3 x'= 1 (7.2.2)

for all x. The residual field f' is then what is left over after filtering,

f(x,t) =7(x,t) +f'(x,t). (7.2.3)

The filtered residual field is not zero since

f 0 f f' i 0. (7.2.4)

Filtering (7.2.3),

f = 7 +f (7.2.5a)

so the filtered residual field can be expressed in terms of the singly and doubly-filtered resolved fields,

P = 7-f. (7.2.5b)



1-57

This proves very useful in modeling the residual turbulence.
In homogeneous turbulence the filter must be of the form G(x - x; A). Then

7(x,t) fG(x -x';A)f(x', t)d3 x'

has the Fourier transform
f(k, t) -= d(k; A)1(k, t) (7.2.6)

where the k argument of G is the magnitude of the k vector. Several filterg ahve been explored. The sharp
cut-off filter (C if jkj - k'l :5 k. (7.2.7)

0 otherwise
make a clean separation of large and small scales in spectral space, but 'he Gibbs phenomena in the inverse
Fourier transform make the physical-space interpretation undesirable. Smoother behavior cn be obtained
with the Gaussian filter,

G(x - x'; A) = Aet-'(•-,)(.-z,/I (7.2.8)

where A is a constant determined by the normalization and depends on the number of directions in which
the filter is applied. The Fourier transform of the Gaussian filter is also Gaussian,

d(k; A) = Be-k'A'/24. (7.2.9)

Filtering is more oi a problem for inhomogeneous flows . The most satisfying approach is to use
an appropriate set of expansion functions in the inhomc-,eneous directions and then to define the filtered
value as the n-term approximation. However, most work has instead used finite-differcnce methods in the
inhomogeneous directions with the Gaussian filter in the homogeneous directions, and taken whatever implicit
filtering is provided by the difference scheme. This is not very satisfying because it leaves the computed field
ill defined, and does not provide a systematic way for estimation of the energy content in the residual ficdd.
This is one of the unsatisfying loose ends in LES that iseeds to be cleaned up by some good research.

The evolution equations for the filtred field are derived by filtering the Navier-Stoles equations, so it is
important that the filtering definition ommutc with differentiations with respect to both time and space.
The Gaussian filter has this property, and so homogeneous turbulence really can b, done properly with LES
using the Gaussian filter. If p = p(t) then the filtered continuity equation is

A+ ri = 0. (7.2.10)

Subtracting this from the full equation,
Uý,, = 0 (7.2.11)

so the residual field is divergence-free, and if p = constant the filtered field is divergence-free. Filtering
the momentum equations, assuming p is constant and again allowing p = p(t), the equation for the filtered
velocity field is

!4 + ("If),i = 47a +VA7_,ji - (7.2.12)

Representing the velocity as the sum of filtered and residual components,

W-y = W + A., (7.2.13)

where the residual stress terms are
%i = UWU' + u'Uj + u.u'. (7.2.14)

In LES one needs to model Ry. Given this model, and a suitable computer, and a few little details like
boundary and initial conditions, single realizations of turbulence fields ca i be 2enerated. In homogeneous
turbulence this appears to be sufficient, because volume averages ever a single realization seem to provide
good representations for ensemble averages.

r
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The term W does not need to be modeled because -t can be computed directly by filtering the product
of the filtered velocities. This is easily done in Fourier space, and we handle this term this way now. Our
earlier representation of this in terms of UiU" + Li,, where Li. was the Leonard stress, is now abandoned.

It may be noted that we have not made any mention of numerical methods and have avoided use of
the term sub-grid scale turbulence. We believe that, it is important to cast the LES equations in a way that
is independent of the numerical method, and would lend itself to purely theoretical aaalysis. However, in
reality the filter width that is taken is related to 'the computational grid employed. The results depend upon
the ratio of filter width to mesh width, and the best results are obtained when the filter width is twice the
mesh width.

7.3 Modeling the residual stresses in large eddy simulation

One can not afford a very complex model for the residual stresses in LES Almost all of the work to
date has been done with simple algebraic models, although there have been some explorations with simple
one-equation turbuleace models.

It is useful to separate Ay into isotropic and anisotropic parts, as is done with viscous stresses,

Af"= IRkk6,f" "- T.,. (7.3.1)

The isotropic term is absorbed with the filtered pressure by writing

=IT+ JRkk (7.3.2)

and then P* replaces j/p and Tj- replaces Ri? in (7.2.12).
An important element of most LES calculations is the Srnagorinski model, which assumes that the

rasidual Ti" is a linear function of the anisotropic strain rate imposed by the filtered field

Tj = - 2 vTS,, (7.3.3)

where v'. is an eddy viscosity of the residual field. If it is assumed that the length scale of the dominant
residual eddies is the filter width, and that the time scale is that set by the strain rate of the filtered field,
then

t = (CsA) 2 VFS..n.. (7.34)

The coeffient in this model can in principle be evaluated by performing direct numerical simulations on a fine
mesh (say 128'), then filtering this data to a coarse mesh (say 83) to define the filtered and residual fields,
and then comparing the model with the residual field from the coarse filtering. Clark et. al. (1979) were
the first to emply this technique, which is now known as a Clark test. For isotropic turbulence the results
are moderately encouraging, and do not show much dependence on Reynolds number, a value of about 0.12
being typical. However, when this test is applied in strained and sheared flows, essentially no correlation
is found between the model and the data. The model simply is inadequate under these more interesting
circumstances.

An important advance in residual stress modeling v-s made by Bardina (1985), who first proposed to
model

= CB( 'ui, -_u) (7.3.5)

The basic idea was to characterize the stresses of the residual scales as being similar to that of the smallest
resolvable motions, so Bardina called this the scale similarity model. By itself it was not adequate either,
because it does not dissipate sufficient energy. But it does provide energy transfer from high to low wavenum.
bers, and effect that is missing in the Smagorinsky model. When used in combination with the Smagorinsky
model (the Bardina mixed model) remarkably good results are obtained in the Clark tests, with the same
values of the constant yielding correlations between predicted and actual stresses of the order of 70% for
shear flow, irrotational strain, and unstrained flow!.
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The value of the constant CB can actually be deduced from a simple theoretical argument. If one
transform to new coordinates moving linearly with respect to the original ones,

Xi* = X, - cit V = t U! = Ui + ci (7.3.6a, b)

the equations of motion of course do not change because they are invar.ant under such (Galelean) trans-
formations. However, individial terms in the equations do change when transformed. For the filtering
operation,

=- + U- = (7.3.7a, b, c)

so that R.y transforms to

U 7, u*u + u*u +u •U f+ cu*+ cu =R.. +c cu. , + ciu . (7.3.8)

The terms modeling Riy should transform in the same way; the Smagorinsky model is invariant under the
transformation, and hence can not possibly represent all of Riy. The added terms of the Bardina model
(7.3.5) transform to

Ai= c [ - 7 + ci' y - •i) + ci , - Uf- (7.3.9)

Using (7.2.3) and (7.3.7b), this becomes

9i = Ri + CB (cui + CUi-). (7.3.10)

Comp-tring (7.3.8) and (7.3.10), it is evident that CB = 1. Bardina was unaware of this result at the time
he did his numerical work, on the basis of which he recommended a value of 1.05!

In recent work yet to be published, Piomelli has been reexamining LES residual modeling using the
recent direct simulation of channel flow as the basis for Clark tests, also carrying out LES simulations uith
various models. This work has shed some new light on LES modeling, which can be summarized as follows.
In coarse mesh calculations (say 163) no real difference is observed between using just the "magorivsky
model and the Bardina mixed model, and the results in general reflect the coarseness of the grid. However,
at 643 calculations there are important differences. The calculations are filtering has been in planes parallel
to the wall only, because as yet we do not really have any good way to do explicit filtering in direction3 of
inhomogeneity. Piomelli finds that the choice of filter function is important in determining the performance
of the residual turbulence model. The filter makes ts appearance in the calculations when the term x is
calculated by filtering the product of the computed filtered components. If the Gaussian filter is used with
the Bardina mixed model, very good results are obtained. If the Gaussian filter is used with the Smagorinsky
model, very poor results are obtained. But if the Smagorinski model is used with the sharp cut-off filter, fair
results are obtained.

The inference from this work is that the sharp cut-off filter defines a clear length scale for the residual
turbulence, whereas the Gaussian filter spreads the residual scales out over a broader range. The Bardina
model accounts for the different scales in the residual field generated by the Gaussian filter. On the other
hand, only one length scale is carried by the Smagorinsky modei, and therefore this model can not account
for all the scales filtered by the Gaussian filter.

One might argue that the turbulence time scale in the Smagorinsky viscosity should be a scale appro-
priate to the residual field. In isotropic turbulence the strain rate of the resolved field sets this scale, but in
inhomogeneous flows with strong mean strain rate it may be better to extract the time scale from the high
wavenumber end of the resolved field, as in the Bardina model. One possible approach is to 'se the velocity
scale in this range,

V=CA -- -'k)(iia- k). (7.3.11)

Another approach would be to use the strain rate,

, CLA2 V( -S i m -.. -

|-
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In LES one probably does not, want to attempt to resolve the wall region of boundary layers, and so
some appropriate wall conditions are needed. For high Reynolds numbers, it i2 through this condition that
the viscosity will enter the problem. The main thrust of Piomelli's work has been to assess various proposals
for these conditions. At this writing about all we can say is that nothing that we or anyone else has suggested
"shc~ws up very will in Clark tests against the direct simulations of channel flow. However, we are hopeful
that a satisfactory working model for the residual wall stress will be found, and this probably will draw
upon new knowledge about the structure of the wall region that is currently being extracted from the direct
simulations.

7.4 Insights from direct simulations of homogeneous turbulence

Boundary conditions are a problem in turbulence simulations. The problem is avoided in homogeneous
t'srbulence by use of periodic boundary conditions. The resulting turbulence is somewhat artificial in that
the motion on opposite sides of the computational domain is fully correlated, which of course would not be
the case in a real turbulence field. One must select a computational domain large enough that the statistical
correlations aý, separations of half the computational domain are small, and when this is done the statist.cal
results up to this separation seem to be quite like those of real turbulence.

A large number of homogeneous turbulence simulations have been carriee out by the Ames/Stanfold
group, almost all using the Rogallo code. -his progrant uses the coordinate transformation (4.2.4), and as
a result achieves remarkable robustness in runs with very strong cefcrmatien. .Dr a recent description of
the code see Lee and Reynolds (1985). Simulations now include homogeneous shear flow at a variety of
shear rates, many cases including scalar transport, a variety of irrotational strain flows, return to ;sotropy
following various strains, some rotation cases. Spec: id codes have handled a funny type of homogeneous
compressible shear flow and some flow compression cases. Meshes ranging from C43 to 2563 have been used,
although the 1283 cases are now the most abundant.

In a direct simulation one must capture both the energy at larg- scales and the dissipation at small
scales, and this limits the calculations to relatihely lew Reynolds numbers. One can usually tell when not
enough small-scales have been captured by a pile-up of energy at the high wawvenumebr end of the spectrum.
The the model spectrum (3.9.4) can be used to estimate the fraction of energy left out of a calculation at
any given Rr. Typical 1283 calculations miss less than 1% of the turbulence energy at RT = 50, a typical
range for these simulations.

The initial turbulence field must be constructed in a divergence-free manner, and this is easily done with
the Fourier representation. The spectrum can be shaped initially and scaled to contain the proper energy
for a ta, get RlT. For details see Lee zmd Reynolds •1985).
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Ft

t6"

Figure 7.4.1 Spectra for relaxation from plane strain k0 ...... J. 1.
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Figure 7,4.3 Vorticity relaxation trajectories
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All of these caiculatiors show a remarkable amour.t of small-scale anisotropy. For example, Fig.7.4.1 shows
one of Lee's spectra during relaxation from plane straih,, with the different lines representing different com-
ponents. Note that the anisotropy persists throughout the -5/3 range of the spectrum. We investigated
this issue of small scale anisotropy by extending the measures of anisotropy discussed in Chapter 6 to the
vorticity and dissipatin fields. The vorticity tensor is defined as

Vii-= WWi' (7.4.1)

and the vorticity anisotropy tensor is
Vi =Vi - W,•Sy/3. (71.4.1.)

The dissipation anisotropy tensor is defined by

D., - D 26,/.
Dd,,, k(7.4.3)

These two anisotropy t,:'cyrs are characferized by their second and third invariants, defitied the same way
as those for the Reynoids Ltress anisotropy tensor b,.- (see 6.1.3). Their anuiotropy invariant maps are the
same form as those for bji explained in section 6.1. The boundary lines are the samc for the bij and dqy
invariant maps, but on the vorticity invariant map the two %xisymmetric side bourdLries are reversed, and
the uppermost point corresponding to one-dimensional vorticity corresponds to the two-dimensional velocity
field.

Fig. (7.4.2) shows the second invariants of vorticity and velocity during relaxation to isotropy from
a variety of different strain types. The trajectories on this diagram 3re generally dawn and then to the
left. Upon the removal of mean strain rate, the vorticity anisotropy relaxes quickly to a point, and then
relzxes slowly, locked on to the anisotropy of the Reynolds stress!. Moreover, essentially afi of the points
sht.wed more anisotropy of the vorticity thatn of the Reynolds tress! These are astonishing observations to
anyone who has grown up with the idea that the small -cales become i3otropic quickly, compared to the slow
relaxation of the scale anisotropy.

It is also very interesting that the relationship between the two irva. iants in the iock-on phase returning
front axisymmetric expansion is quite dfferent than that when returning from axisyn'metric contraction.
This suggests that there may be two types o" competing structures in turbulence. the noodles formed by
axisymmetric contraction and the pancakes formed by axisymmetric expa:.sion, ana 1'haa perhaps bettor
turbulence models could be made by treathig these structures separately.

We havw mentioned that the trajectories for return to isotropy on the Reynolds stress invariant map are
not well behaved, which casts doubt on the viability of modeling the slow pressure strain and diss-,ation
anisotroy terms in terms of bqi. However, those on the vorticity map are extremely well behaved. Figure
(7.4.3) snows these trajectories, which are well fit by the simple model

fv --- (7.4.4)

where ca depends on both the invariants of bi and vi. The dissipation anisotropy trajectories are quite
different, but they too are very well behaved and can be rodeled quite .teatly. For details see Lee and
Reynolds (1985).

Upon reflection, the requiremen. that the vorticity field be anisotropic is obvious from the Bi..o-Savart
law; if the vorticity spectrum were isotropic, the Reynolds stress specdrum would be isotropic. It may be
that explicit consideration of this anisotropy in turbulence modeling could have some advantdges. We have
been exploring some possibilities.

In another recent study, Rogers (1986) has examined the structure of homogeneous turbulent shear
flow. His studies reveal that hairpin vortices ot tha type fuund in wall boindary layers are also found in
homogeneous turbulence. However, in homogeneous turbulence there are both 'up* and 'down" hairpins,
while in a boundary layer =nc :c" rnly one kind. He also found evidence of some transverse vor;ices believed
to be associated with the weak orientation of vorticity caused by mean rotation (see section 4.6).
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Lee has extended Rogers work to (high) shear rates and Reynolds numbers comparable with the viscoub
region of turbulent boindary layers. Remarkably, he finds long longitudinal streaks that familiar objects :n
the wall region, with transverse spacings that scale on the turbulent stress and viscosity in ex- _dIy the same
way as in wall boundary layers. This work suggests tihat it is the high shear rate, and not the wall, that
produces the streaks! This would be good news f,, modelers, because it would mear that models based on
homogeneous turbulence might have far more to do with boundary layer flows than one might think.

Rogers also studied scalar transport in homogeneous shear flow at three different Prandtl numbers.
There aie three interestii.g situations corresponding to an (imposed) means scalar gradient in each direction.
lie calculated the scalar fields for all three cases at the same time for a set of common hydrodynamic
simulations. A surprising result, actually seen in experiments by Tavoul-ris and Corrsin, is that some
cross-gradient scalar fluxes are larger than the flux in the direction of the mean gradient!.

Rogers used his insight about the hairpin vortex structures and the transverse vortices to explain the
mechanism by which these cross-gradient transports car develop. He then went on to model the scalar
flux in two ways, using his simulation data both as a guide in the modeling and as the basis for coefficient
evaluation. The models deal with an anisotropic diffusion tensor D,0, defined by

hi = uý0' = -D,oe,, (7.4.5)

where 0' is the scalar fluctuation and 6, is a mean scalar gradient. The diffusivity tensor could be calculated
from his measurements, and is found to be inherently non-symmetric. However, he did find that it became
antisymmetric in a coordinate system that is aligned with the principal axes of the Reynolds stress. This
led him to model the diffusion tensor in the form

Di = C1 6,j + C2Ry + C3 fl,,. (7.4.6a, 6)

He was able to correlate his coefficients with Reynolds and Prandtl numbers to within about 20%.
Rogers made another model assuming that the scalai flux is aligned with the sum of the mean gradieut

terms in its own transport equation, and thereby obtained a model of comparable accuracy with only one
free coefficient. This model is

lCDh, + h, U.,+R, 0e,=0 CD=16.1 (+- ) (1+ 131,)-0.535 (7.4.7a, b)

where 7 = q2 /6 and RT = q4/(vc). This result should be of immediate use in turbuience modeling for both
homogeneous and mnhomogeneous flows. Rogers has recently checked this model agvinst direct simulations
of turbulent channel flow at Fr = i and found that it is remarka'ly accu-ate fo: the flux in the direttion of
the mean temperature gradient and within about 20% for the flux perpendicular to the mean temperature
gradient.

7.5 Direct simulations of spatially-developing flows
Some of the most exciting work at present are the boundary layer simulations of Spalart. He is using

a clever stretching of the coordinate system that enables him to use periodic inflow-outflow conditions in a

growing boundary layer, and has already produced results about the structure of boundary layers in pressure
gradients of much interest to experimentalists.

In order to simulate more general turbulent flows, inflow and outflow conditions are needed The outflow
problem is simpler and we have had a reasonable solution for some time. The inflow problem is harder, but
we have recently made some excellent progress.

L.owery (1986) simulated the spatially-developing mixing layer, including scala: tr..nsport. He found
that a soft convective outflow condition, a+ a' * 0 (7.5.1)

5t + T;-=0I Ot 8

"7 applied to the velocity components and scalar worked quite well, w,.h minurrum upstream influence. The
convection velocity U, was taken as the average of the two free stream speeds. At the inlet he forced the
flow with a combination of fundamental and two subharmonics of a dominant instability of the inlet layer

let
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(tanh profile), because the layer was forced, it responded lik2 a forced layer, with parings occuring cycicly
at frozen locations. And, the layer grows not linearly, as do natural jayers, but by leaps and borids, as do
forced mixing layers in the laboratory.

It has been asked if the mixing layer is absoluteiy unstable, in which case i9 the forc;ng is stopped after
large disturbances have developed downstream the layer should continue to remain. When Lcwery terminated
forcing, the initial region of the layer rclan.iuarized, suggesting that the instability *as convictire, but midway
dcvn the flow the turbulence never went away, and by the en:it the flow wai quite turbulent. His cilculatioa
did not include the splitter plate, wlhich undotbtedly plays a role in promoting absolute instability, so the
matter is not really resolved. Lowery also studied the growth of three-dimensional disturbances in the layer,
finding that they grew to scales and structures c.iara.cteristic of the braid region of the mixing layer.

Ongoing extensions of our mixing layer simulation work by Sandham involve the use of random ;itter
of the forcing to simulate more ratural turbulent inflow condition. This produces the linear growth seen
in natural experimental layers, at growth rates in excellent agreement with experiemnts. The resulting
statistical quantitiers, including the scalar pdf, are much more like those measured for natural layers. It
now seems that this will be quite an acceptable method for generating relativelt) simple yet effective inflow
conditons for direct numerical simulations of turbulence.

Current work is concentrating on extensions to comprebsible mixing layers, the goal being to use these
direct simulations as the basis for building better turbulence models for supersonic flows, including combus-
tion, both for use i-i LES and in simpler turbulence models. There is a growing group at Ames, involving
Rogers, Moser and others, beginning to work very seriously on turbulent combistion s-mulations. It seems
safe to forecast that a .'ecade from now the capabilities for kno;v much more about the modeling and simula-
tion of these and flow. 3f technical interest will be considerably advanced, aud students who have mastered
these notes should b. r0oady to begin the exciting work ahead in this area.
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TURBULENCE MOD-LLrG THROJdG ONE POtIrN CLOSURES

-APPLICATIONS - ENLI(XTENING BY LARGE EDDY S'MULATION

D. LAURELNCE

EDF - DER - Laboratoire National d"Hydraulique

6 Quai Watier, 78400 CHATOU FRANCE

Reynoh•s stress, k-c , and Low Re models for the modelling oi inhomogeneous flows are

considered. They are shown to provtde saaisfactory predictiors for engineering flows. Near

wall and buoyan.y effects are also included. Results of Large Eddy Simulations are used as

guidance to the standard one point clesures, especially for data which cannot be obtaii,ed

by expqriment.

INTRODUCTION

The problem "f computing tirbuld.t0 flows arises from the non-lileir term of the

Nrvier-Stokes equations and the simple fact that "the average of a product is not equal to

the product of the averaged operands". Hence the Rey-olds &tresses appearing in the

Reynolds averaged Navier Stokes equations : RiJ - u'iu'j. The Reynolds Stress transport

equati.-ts (RST) are also ron-linear and contair third order correlations, the evolution of

which depend on still extra unknowns etc...

So the system of equations for the statistics of a turbulent flow Is infinite. Also If

the spacial structure of turbulence is to be studied, 2 point correlations, or

equivalent*,, spectra must be considered. The coi~putational power at Lur disposal being

finit(. one has tc cnoose at what level modelli-g assumptions must be introduced, i.e. hlis

power iL shared between the number of variables (turbulence statistics) and the number of

points in physiLal space (inhb.mogeneity).

This situation can be Illustrated by she sketch hereafter

0 b.pectra! Closures
I OIJ (k)

0, (Kra'chnan, Mathieu, Jeandel...)

Renormalisation

0 Group (PI'onneau. rzag)

o k-c multiscale
0 (Schiestel)

Cc'utu uiuj-Et
pw Launder, Rodi, Reynolds , Lumley

k- C ... most engineering applications...>

(turbulent kinetic energy-dissipation)

Large Eddy Sziaulation
(Stanford. Nasa, ONEW., DFVLR...)

Direct Simulation

Cellular Automata

Mean Flow

Homogeneous wall Recirculating I Industeial problems.C

Re Direct Simulation
nu/be, 

,

Cellular automata

ri!outes to chaos, Fractals•
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The top and bottom of this table are illustrated in this course by Dr. Aupoix and Pr.
Reynolds while the central part, one point closures, is currently used in engineering

problems which we will consider here. Valuable information stems from each type of approach

to the problem and In addition to experience, enables improvement of all the other

approaches, and in particular the one point closures.

For this reason, when involved in a particular type of turbulence modelling, one must

also be aware of the work going on in all the other approaches.

We will consider here Industrial applications for inicompressible fluids. Many were

conducted earlier and have been reported more thoroughly outside of LNH. To keep the

reference list short, only mandatory publications are given (in which thorough lists can be

found), namely : Mathieu, Jeandel [I1 for spectral analysis ; Launder, Reynolds, Rodi 12j

for second moment practice, physics, new simulations of turbulence, and applications ; Rodi

[3] for engineering practice. Also recomended for an extended introduction : Lumley [4]

Arpaci, Lasen ! 5 ] for thermal problems F eavre, Kovasnay at al[ 6] also consider

compressible flows.

I. ONE POINT CLOSURES

The oldest proposal is Boussinesq's Eddy Viscosity Model (1877) In which it is assumed

that the Reynolds stresses are proportional to the gradients of mean velocity

-uiuj -V T( 2Ui +QUi 2 - k 6ii (EVH)

3xj axi) 3

k - - (u-i-i)

2

This model provides good predictions provided the velocity 3nd length scales of the

turbulence! Ut and Lt are known, so that vT can be prescribed : vT - Ut Lt.

This is an easy task only for boundary layers where Lt (also called "mixing length") can

be defined through a ramp function

Lt

K - 0.4 (Von Karman constant) Lt - KY

S- boundary layer thickness Y4

Y -distance to wall 0.2 -1

Also assuming : Ut .Lt , ,

Prandtl's mixing length model is obtained :•t - Lt2j !U

This is not a "modern approach" but performes well and more sophisticated models coincide

to th's one when applied to boundary layers.

Another field where the mixing length is still used is "Large Eddy Simulation" (LES),
A where the mixing length (size of largest sub-grid scale eddies) is taken proportional to

the mesh resolution.

'-..

pI
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I.1. TRANSPORT EQUATIONS

The state of the Reynolds stresses is a consequence of the strains of the mean flow, but

turbulence has strong memory effects. Turbulence can be considered as a set of eddies the

angular momentum of which can only be changed progressively. Status of t.,e Reynolds

stresses thus depend not only on the local mean flow but also on the (Lagrangian) history

of the strains which the turbulence hat experienced. The rate at which the anisotropy and
level of turbulence (statistics of eddy angular momentum) can be changed depends on the

ratio of the mean train, S (dU/dy), and the time scale of turbulence k/ C( - energy I
dissipation).

Hence in modern approaches where it is ambitionned to model complex inhomogeneous mean
flows, introduction of transport equations for turbulent statistics, which will account for

the Lagrangian history of the turbulence, is necessary.

The most popular of these models for engineering flows is the two equation k-C model.
However beginners might be confused by the "variations of the constants" often introduced

In this model. To see why this is legitimate, it is preferable to begin with the more

complex Differential Second Moment Closure (DSM) in which less assumptions are made, and
then reduce the DSM to the standard k-c model.

1.2 DIFFERENTIAL SECOND MOHENT CLOSURE DSM

Let U, P, e be the velocitypressure and density of the mean flow ; u, p, e the

fluctuations ; v ind g the molecular viscosity and gravity (density variations only being
considered when associate with gravity). The exact equation for the Reynolds stresses can

be written as

,u~u , -
'"."k " U,.2 -7 -- .- U

;t •X I ;Xk 'Xk

, 'I

-÷,w- ., U ,
~t -tij

:Lk kk k , €

)Xk ;.i ý]J e)

The transport by mean flow and production terms Pij and Cij are computed exactly. diJ

corresponds to dispersion of turbulence (vanishing for homogeneous turbulence) and F ij is

the dissipation (transformation of kinetic energy into heat) and Is assumed to be Isotropic

as for fully developed turbulence : c i= 0 iJ

A lot of works have been devoted to the pressure-strain correlations which play an
important part in modifying (reducing ?) the anisotropy of the Reynolds stressei. It ij

shown 121 , (6] that 0ij can be decomposed into 3 parts

- Oij,l - the non linear part depends only on statistics of the fluctuating velocit.y
S- iji,2 - the linear part also involves the strains of the mean field

- 0ij,3 - accounts for buoyancy effects.

X-1
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These quantities are not accessible to measurements, the models have only been tested by

their indirect effects. The main assumption is that of a "return to isotropy" and damping
or production. Moreover, near wall effects are found to be strong.

This is a problem for which great help is expected from LES and DS and is presently being

analysed ("Numerical data" on dij or cij require non-homogeneous simulations which are

only just startingland DS which are still restricted to very low Re numbers).

The model considered is that of Launder, Reece, Rodi !61 and is quite cumbersome but

reduces to 4 equations in 2D flows (0, u-2, MuT and C).

Although it has been proposed for over a decade, pxogress of computers have made it

manageable for engineering computations only recently. It is widely used by the UNIST team

(Launder at Al 7 , 1986) and is presently developed at LNH. The full model can be written

as

S- k `

Dij ij S+ ikj. + .-
ktCT- e +iz i + l e •iji k 3lJ + j k P

Die +• a1  • p ij 3 ii 3U-J

P,_ k- 7-- +11+8

i11 RCUVj + 3jj U I 
8
1J +'k cii, -J -C, {G1, e ie 6

6, k kak

1.3 ALGEBRAIC SECOND HOMEINT CLOSURE (ASM)

For a three dimensional non isothermal flow the DSM model requires that 15 coupled

differential equations be solved. However if only the source and sink terms are considered,

the model becomes algebraic. To preserve some generality for inhomogeneous flows, we can

assumo with RODI 18) proportionality of the differential part of u-iuj with that of k

Du____.- Diff (ului) - ulu F-Dk - Diff (C%1

Dt k L't I

This is illustrated by Viollet in a appendix A. Applications of the ASH to a stratified

shear flow are shown to yield much better results than the standard k-C model especially

in the unstable situation, where the latter model fails to predict the rapid generation of

turbulence by buoyancy. It is only when this effect is more moderate (Froude - 5) that the

eddy viscosity assumption yields acceptable predictions.

It is also shown that starting from this model, one can reduce it to the standard k-c

model but with variable viscosity, diffusivity coefficients and Prandtl numbers, CP, CPO

and oo as functions of Richardson number and (P+G)/c , (P - 1/2 Pii, G - 1/2 Cii).

For turbulence driven secondary motions, as in a square duct, the modelling must be at

DSM or ASH level. They yeild fairly good results as can be seen on Fig 1.3.1, where Reece's

!21] , and Noat and Rodi's [22] computations are compared with measurements of Launder and

Ying [23]

A The situation is different for a meandering channel where the secondary motion is induced

by inertia and pressure forces. In this case, good predictions have been found by reducing

the ASY to a k-c EVM with variable ClJ (Fig 1.3.2 ; Demuren Rodi f24]

Fig
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1.4 THE STANDARD k- E MODEL

To further reduce the computational effort, one can consider nnly the transport equations

for k - I uil-uj and the dissipation c , which still enable to prescribe turbulence scales

2

velocity :Ut ~ , time : t-klc , and length t - k
1
,
5
/c. The eddy viscosity is thus

written as VT ~Ut.Lt - Cp k
2

/ C .

The k equation, which contains no pressure-strain terms is modeled by

- TS• uj a-.a (_v •*+o+-c
at axJ ?xj \ r%

The C equation, In which most of the terms are totally unknown is modeled similarly

at axj 2xj (or axi) k k ~ 1 c

For grid turbulence, the equations reduce to

U ak U ac 2

S. - c and - - C C2 C , yielding
ax ax k

k _,-n_, n _-___, and experiments give n Z 1.
2 

so C 2 - 1.92

C ct2 - 1

In the final stage of decay of k, n is higher, so C 2 must be decreased for low Re flows.

When only shear is relevant in one direction, the production is

I -= E. ;u/ aY - Cp.k2/C ( ai/ ay)
Hence Co - (Tv/k)

2
. E /p

The standard value C - 0.09 is taken after observations of the boundary layer where P - C

and UI/k - 0.3.

However, this formula shows that Cp can be varied in configurations where a better value

of tbe structure parameter *Iq/k is known (curvature, weak lets). Also Cp can be plotted as

a decreasing function of P/c (round jet, far wake). See Rcdi [2j and [31

Again, for the log region of a boundary layer, Cc I can be related to the other constants

by : Cc I = Cc 2 - k

oc" Vu

The standard, widely used values recommended by Launder and Spalding are

Co - 0.09, Cc 1 - 1.44, Cc 2 - 1.92,ac - 1.3

The boundary conditions are given by supposing that the first grid point is located in

the log region and thus one writes

-v T ao - 1 7- i f2

ay e

k Uf2 UP

I KY

7
is the wall shear stress, and Uf the friction velocity.
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AppLications

When testing the model on "academic" turb flows one can have the impression that the

quality of the predictions is only fair, . that constants adjusting is systematicaly

required, (See table II, p.1O).

From practice, it seems that for the more complex industrial applications, the standard

model is quite satisfactory. This may be because the test cases measure the effect of

turbulence solely (which is expected from a good test), whereas in "real li(e" problems,

the main features of a flow result from a balance between turbulence, inertia and pressure

forces, these two latter now being well represented by actual numerical schemes.

Furthermore, complex geometrics provide strong guidelines for the mean flow, whereas test

cases in unbounded space can give rise to large deviations far away frnm inlet conditions.

Vehicule aerodynamics

The 3D code of LWN, ESTET, using the standard k-c model has been applied to vehicle

atrodynamics [20] . It is obeerved that the flow over most of the car can be predicted even

with inviscid equations. The friction stresses are not really important for the computation

of the flow in the front pa t, but the nature of the flow in the wake, especially behind

blunt obstacles, requires a correct description of the turbulent stresses in the large

structures of the wake shown on Fig 1.4.1. The rate at which these stresses develop depends

in turo on the characteristics of the turbulence in the detaching boundary layer. The

correct structure of the wake enables a good comparison of the pressure coefficients with

scperate comptutations (Chometon 120] ). The overall pressure drag is highly dependant on

the values of Cp found at the back. The slight hump of Cp In the middle of the rear end is

due to the jet formed between the recirculating eddies.

For a slanted back version the pressure gradient between top and bottom associated with

lift induces a vertical component of the flow along the side, which in the wake generates a

pair of longitudinal vortices ("wing tip vortices") (Fig 1.4.2).

1.5 NEAR WAI.L LOW RE MODEL

In many problems, the interest lies in the wall region - heat transfer, wall shear

stress, aerodynamics etc... It is now possible to use very fine mesh in this region so that

the viscous sublayer can be described. In this case the log law hypothesis can be

abandonned and exact boundary conditions can be prescribed

U (wall) - 0, k (wall) - 0, T (wall) - T (solid)

The low Re version of the k-c model must then be used. To see what modifications are

requested one can use the following devdlopment of the fluctuation, consequence of the

continuity equation :

div u b y+c y2 ...

u wall 0> v o + c y2... (Y : wall distance)
w b y + cc y2..

3 3

Using the non dimensional variables scaled by the friction velocity Uf

+ +
tc u+= uIUf, Y+ Y Uf1v

We find k+2 . A+ y+2 + ys +..., C 2A+ +4Be Y+, dU+Idyt..1
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and since the production is P - y+S, while (,A k)+ 2A+, the dissipation at the wall is

balanced by the molecular diffusion of k, which of course must be included in the model.

This also means that further away from the wall we must have P > c

Also, since u' - y+3 and k+÷ dU+ -Y+4

c 2 
dY+

We must introduce a variation in the turbulent viscosity

V T - Cp fp k2 with the function fm=f(Y+) at the wall, so that fu (see p. 5)

c k P
Furthermore, the standard value of Cc 2 is not suitable for the final stage of decaying

turbulence, as mantioned earlier, and C el is related to Cc 2 and CJi so two additional

functions fl and f2 are introduced.

Various propositions have been made for fi, fl and f2, and a thorough review can be found
in [ 8] . The models of Launder E Sharma and Lamb & Bremhorst have been tested for pipe

flows (Fig 1.5.1) and give similar results, although the latter is not applicable for
decaying unbounded turbulence since it uses explicitly the wall distance Y. The resul'a are
well compared to experiment and confirms the preceeding analysis.

This is a field where experiment can be completed by direct simulation from which
pressure strain, turbulence diffusion and dissipation terms can be computed. This type of
computation has been conducted by Kim and Momn [91 at NASA Ames and data is now being
analysed which should soon greatly improve Low Re modelling (Kim, Momn, Mansour).

Near wall buoyant secondary motion

The same model is now applied to an "industrial" problem : in a steam generater, the cold
feedwater (7*C) is brought by a horizontal cylinder immersed in hot recirculating water

(275*C). The wall temperature inside the cylinder is expected to be - 200*C. Density will

be reduced by 25% and the Prandtl number will vary by a factor 10. So a very fine mesh is
necessary in the boundary layer where a secondary buoyancy motion is expected. A 3D

elliptic computation is performed with the ESTET code. The k and mean velocity profiles are
slightly changed and the secondary motion appears right at the entrance (fig 1.5.2). The

fall st the cold core of the flow is compensated by the buoyant upwards creeping motion of
thL sublayer and a recirculation at the top of the duct, replacing the cold core by more
tepid water coming from downstream. The close up view shows high refinement and distortion

of the mesh near the wall (the conjugate gradient method enables convergence although the

matrix is very ill-condirionned).

A stratification develops, though not as strong as that actually observed. It is
conjectured that the heat transfer is underpredicted since the model does not account for

turbulence production increase with buoyancy for a horizontal temperature gradient. This
will be analysed by LES in par. 11.4.
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Parabolic sub-layer low Re model

The previous computation is very time consuming because of the large number of nodes for

all of which advection and pressure are computed. However this is not necessary in the

transition sub-layer (Y+- I to 30) when buoyancy is not considered. One can assume that

near the wall, advection is negligeable and that the main feature is diffusion of momentum

in the normal direction with a constant pressure gradient.

The numerical procedure is the following : an elliptic computation is performeJ on a

coarse mesh (A Y4-50). In the first wall cell a ID, refined mceh is set between points A

and B. on which the parabolic momentum and low Re k-c equatious are solved.

* . nodal poln's for the
o illiptic computatiloa

*A .- nlodol points for wall model
/7/'/lt /iweill//I/f///I//ll /// / I//

Definition sketch for the wall treatment

- From the elliptic computation at step n, values of V (r.). k (B), 9 (B) are talen as

outer boundary conditions for the wall model ;

- From the wall model results, values of k/ xn (B), audxn (B), DtPxn (B) are taken as

boundarl conditions for the step (n + I) of the elliptic computation.

- Study oF a simple e:lample the wall-driven turbulent flow in a rectangular cavity

As an example, the cane of the wall-driven turbulent flow in a cectangular cavity is

treated . in the experimente from Normandin, a moving belt at the left-band side of the

cavity entrains the fluid mction [261 . A computatio - 'e SBIRE code using wall

'unctions is compored to another one using the above described technique, with the same

mesh for the elliptic computation. In the latter, the wall models use an expanding 10

points mesh. Figure 1.5.3 shows the computed streamlines for the two computations, while

table I shows how the higher wall stresses obtained using the local wall models enabiec

better prediction both of the entrained flow rate and of the position of the center of the

recirculation. Figure 1.5.4 shows toe comparison of velucity profiles at 2 locations frcm

the experiment and from the two computations.

lable I : Comparison of bulk flow patterns for the wall-driven flow

: Recirculated Position of center of
S •flow rate recirculation

o: (cm) 0(cm)

: Experiment : 50 : 3 8:

Computation with :all 44.5 35.8 8
funct

4onrs

Computation with local 48.6 32.". 8
lcw-Re wall treatment . . : :

4
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-. Application to a LMFBR HOT PLENUM

The technique for wall modelling using local one-dimenslonal wall models, as described

above, has been applied to the two-dimensional computation of the hot plenum of the RNR

t 1503 project, at nominal steady-state. This steady-state is non isothermal due to

- the outlet temperature differences between different parts of the core

- the heat transfer with the cold plenum (below).

Figure 1.5.4 shows the computed velocity and temperature fields in the whole plenum,

while figure 1.5.6 shows at two points of the redan the results of the local wall models,

in terms of velocity, turbulent kinetic energy and temperature. In this case, the local

wall models lead directly to the steel temperature (assuming a given temperature and heat

transfer coefficient on the cold plenum side of the redan), without any need of an

assumption concerning the heat transfer coefficient in the hot plenum.

1.6 COMMENIS ON NUMERICS

DSM

The full Differential Stress Model, although proposed since over a decade has not been

widely used until recently with both increasing computer capacity and improvement of

numerical schemes. Nevertheless it is still a difficult task since with the replacement of

the eddy viscosity by source teratu in the momentum equation, div uT7ji , we lose numerical

stability. Indeed, since the modeled turbulent stresses are no longer aligned with the mean

strain rate tensor, in some situations this can result in a direct imput of energy into the

mean flow. The coupling with the mean flow is delicat aihd often initial data must be given

by a standard k- c computation. Also, the coupling between components is sensitive and a

careful decomposition between explicit and implicit terms is carried out to ensure

stability. Indeed, during transients some schemes can lead to negative normal stresses u12.

Code maintainance

In order to assert reliability of the code for industrial applications and simultaneously

allow modifications for improvement ef the scheme or the turbulence models, an ensemble of

test cases is maintained on which each version of the codes can be run at any time. The

simplest one is the channel flow shown in appendix B. The head loss coefficient \ (Re) is

of course correctly predizted, but only at the far end of the channel. This example is

shown here to illustrate the strong influence of inlet condition : U, k and C are given

constant across the width and only after 200 mesh steps, the equilibrium values are fodnd.

In applications the values at inlet should be defined as accuratly as possible.

For some test cases it is known that the k-c model fails to predict the measured values

(the backward facing step for instance). On the other hand, it has hapened that

discreptancies have been attributed to the model, and in the meantime, improvements of tho

sole numerics yielded better results. Computations are now compared in IAHR (International

Association for Hydraulic Research) work-groups for a set of benchmarks. This defines a k-C

consensus" solution used as reference for the codes.

The 2 and 3D Finite Element code N3S, developed at LNH now inclueds the k-C model and

has passed the "backward facing step" test (Fig 1.6). Including such a turbulence model in

a FE code nearly doubles the CPU time requirement because the diffusion matrix must now be

re-built at each step. Also, introducing the "lcg law" boundary condition in the

diffusion-pressure coupling is not straightfoward ( 25] ).
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MhK.E II - Appllca.in maples of k - C model

k-• Predictio Impoved-ith

Grid Tublence Good Lw Re model for final stage

Cannel flowGoo

Plane Shear cow

Remd jet Spread overpredicted (30 %) ) " f(-/$)

Axieymetric wake Good in near field • - f(P/g) for far field (x/)>30)

Wall jet Spread overpredicted (20 2) ASM, DIH

Aresse presasre gradient Stress overpredicted I eq (Wxing length)

Favorable preseure gradient Good for moderate acceleration Low Re model for stronger
accelerntions

Baclasard facing step Length of separation buble cNe significant
unserpredicted

Sudden pipe eaqarsin Good for amn recirculatio•, second
buble not reproducad

Ozvature/rotation Fair Qj decreased or rotation in I eq.

Turbulence driven

seconiary motion Noae ASM or ID

WaU driven cavity Recirculation -ate underpredicted Low Re model, AS4, D2I

Wall heat flux In non Badly underpredicted (stagnation foundary condition accounting for
homogeneous situation point) advected free scream turbalmnce

II LARGE EDDY SIMULATION

11.1 Introduction

In the Large Eddy Simulation (L.E.S.) approach the total instantaneous velocityv(.,t)

is decomposed in 3 parts :

V(x,t) - V(x) + V(xt) + v'(x.t)

V(x) is the mean flow component, while the fluctuating part is decomposed into a

resolvable scale part V (i.e : turbulent component of scale larger than the mesh

resolution) and subgrid scale (SGS) part v'.

It is assumed that the subgrid scale contribution to the Reynolds stresses, v'v', can be
more easily modeled by a mixing length model (Smagorinsky) since small scale turbnlence is

expected to be more isotropic and geometry independant than the total Reynolds stresses.

k4
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However, in contrast to the previous closures thero is no spectral g~p betwee.a computed

aid modelled components. So the strong coupling mtght not reduce to a simple one-way energy

transfer (dissipation of resolvable scaleý energy). Furthermore, the cross tarm T v' + v -

does not cancel if the filter 7" is rot a sharp cut-off filter in Fourier space. It was

found that adding the "scale similarity model" of Bardina, Ferziger, Remnolds ho] (B.r.R.),

which models the scales just below cut-off using those just above (it c - "- lu,

signJficaatly 'mproves the predictions ; especially the shaped .f the e.nergy spectra near

cut-off srave number.

F-. homogeneous flows the mean component .s often not included In the computed variables

ad is accounted for by a source term ir the V equation. But this can not hold for more

complex flows whet' V is also in unknown. It hab been noticed by several authors

(Friedricn, Scbumann,Laurence [III) that the schemes themselves are not Galilean Invariant.

Berter results are obtadned I y using translational compitational frames where the modulus

of V is made as s8all as possible. The problem adressed here is that of accurate numerical

representation of small scale fluctuations undergoing simple transport by the mean flow

(without non-linear interaction, and thus theoretically not inducing a CFL condition). This

preblem will be enhanced as the number of nodes is increased (ie ratio of larger to smaller

resolved scales).

Speaking after Dr Reynold'- Jcture I can Rssime this brief introduction will suffice.

The previous remarks and numetical cole are deth4led in appendix u. Results are presented

hereafter. The recent computations are from H. FHOUDLI who is preparil., his thesis at LhH

on LES a-)plied to I peint closures ; tais work wiUl finish by the end of 1988.

11.2 C•'id Turbulence

The grid turbulence decay exper.-:,at of COMTE-BELLOT and CORRSIN i121 has been used as

benchmark for the development of our LES code. The constants of the sebgrid scale models

where iitred to match experimental zesults at the second station. The energy spectra at the

3 station is still very well .eproduced. We use the implicit filtering 'of the numerical

scheme instead of a Gaussiai filter to retain as much information as pos•ible. The high

icctracy of the weak formulation (in the seas of the Finite Element approach) for advection

enables conservation of energy right up to thL maximum resolvable zcale. 1he implicit

filtering is thus very sharp. Results (flg 11.2.1) are quite satisfactory since the

disL etisation is performed solely in physical space (the long term goal beinj LES of

highj,- in.omogeneous flows). When possible, pseudospectral ýolvers are use3 to restive the

numerical set of discreet equ-itons, which is done very rapidly using the ":.7t 'Polon

solver" library of Schumann et A] [13] , extended to our 27 point d'scretisation of

Laplacians and mass matrix.

Since the spectra are correct, the deerearc of turbulence intensity is also well comparet'

to experiment on fig 11.2.2, where the filtered (computed) value is completed by an

evaluat.In of the subgrid sca . intensity usin,_ the defiltering procedure proposed by BFR

11.3 Homogeneous shear

Tne experiment of Champagne, Harris, Corrain [14] has been simulated, in which the mean
flow• u duces to a constant shear : dVI/dx3 -5, " V3 - 0, where 12.9. -

1
.

T1,2 turaulence intensity shown on fig 11.3.? is well predicted ecpecially when the BFR

defilt.ring procedure is ,sed. Note that both resolvable and SGS energies tend to be

constant at the end of tne computation, and so does :he eddy viscosity, vT.
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SinceV T is constant with respect to time and it 4j also observed that statistics do not

change if V t is constant In space, one could ask what dilference there is with a direct

simulation (D.S.) whe.e v - v In the LES the high wave nuvber end of the energy spectrum

is expected to behave as k ! which is very different from the behaviour of the spectra

in the Kolmogorov range. A direct simulatica with V - VT would -equire a much finer

resolution, that is, much more computational power, even for a very msoderate Reynolds

number. Also, another difference lies in the use of the scale similarity model which cannot

be expressed in terms of a viscosity. It actually enhances transfer of energy between

computed scales with a zero net drain.

The evolutions of the Reynolds stresses obey the foll•,ing equations

D ut
2

/Dt - 2P + 0 11 - c 11

1) u2
2

/Dt - 0 22 - c 22

D u33/Dt 0 33 - C 33

D ulu3/Dt - - u3
2  

013- c 13
D kIDt . P -C

With the notations of per, 12, and P - - 1/2 u=u3.S. Al'o, isotropy of the dissipation is

commonly assumed , C ij - 2/3 -6 ij.

This experiment is often refered to as "low shear" since S is small and the production

time scale I/S is large before the turbulence time scale k/t . This means that the

equilibrium state is not reached. Indeed in further experiments (Graham, Harris, Corrsin

[15] ) a higher shear, S - 44.5, enables to reach higher values of S.t where it is observed

that k grows linearly and the anisotropy becomes constant.

FPom the previous equations we can expect that most of the anisotropy will be found in

u1
2 

and ulu3 which are directly influenced by the mean flow.

The Reynolds stress anisotropy, bij, is coupared on Fig 11.3.2

bij - (iiiu-j - 2/3 k 6 ij) /2k, k - Iil-iJ

2
The crude LUS value <bij> slightly overpredicts the anisotropy. Very similar results were

obtained previous~y by B.F.R. fit0 , This is not surprisiug since it lacks the contribution

of the SGS which are moie isotropic. Assuming that they are totally isotropic

(ujSGS - 2/3 kSGs 6ij) we can write : bij - <bij>.r, where r - kLES / (kES + kSGS,

- 1/1.5.

This would reduce too nuch the anisotropy, which means that the SGS stresses still
contain some anisotropy. Note that it. the experiment, the initial turbulence seems to be

quite anisotropic, hence the intersection of b22 and b,3 .

If the anisotropy i. to reach a steady state, the pressure strain correlations, 0 11 and

0 13 must be opposed to the production, while 0 22 and 0 33 should xedistribute the energy

(i.e. be positive) in order to sustain u2
2 

and I3
2 

despite dissipation. LES predicticn for

Oij confirms this fact on fig II.3,3.

The L.R.R. model

The difference between -u12 and ',-12 can only be imposed by the pressure-strains (if

the dissipation is isotropic). The version of the Laundur, Reece, Rodi [16] model

presented in 1.2. is a simplified one since 0 ijl - - t. t .2.bij can only reduce the
anisotropy and 0ij,2 are equal for .he (22) and (33) components. Thus this version makes no

distiaction between 722 and •z.
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The initial model presented by L.R.R. [16] was

Oij2 a.fPji -2/3 P'i, b.k.e{ On in ..c{ij 2/3Pa;)
1-axJ axi)-

Wher, P 0i - -{ui~k aL1 +lUka + a

and : a - (C2 + 8)/I1 , b - (30C2 - 2)/55 , c - (8C 2 - 2)/Il

The only constant C2 enters by a rather complex manner because the previous eqiation has

been derived from tensorial properties. For this same reason we will not change the

expression Lut only try to fit the constant C2. The presence of term Dij will now

distinguisb u"2 and u
2

3.

Considering the precenr shear flow and ass'ming steady state for anisotropy,

D bijI/t - 0 yields :

bil - ( 4/3 P + 0 11) (P Q )

1622 - (-2/3 P + 0 22) 1 (P--)

b33 - (-2/3 P + 0 33) / %P C)

Now reolacing 0 ii by the complete LRR sodel, we get

bll - (8 + 12 C)1P3:..rP+ , P+P(-c+CI)

b22 - (18 C2 - 10)/';3.P
4

b33 - (2 - 30 C2)133.P+

In L.R.R. fl6J , the CHC experiment is used to fit C,2 0.4 after choosing C1 - 1.5, but

we can fix C2 independantly of CI b; considering the ratio bii/bjj (this alto enables to

use LES predictions directly since the previous defiltering factor V vanishes).

Figure 11.3.4. sh.ws bii/bjj as functionn of C2. Since wc expect b33 < b22. and bIl to be

-,,t ruiisotropic, the possible range for C2 is 0.25 < C2 < 0.55.

Thus defining C2 independantly from C1, the CHC 1w shear experiment with b22/bll - -0,4

and b33/bIl - -0.6. at St - 3.5 would yield C, - 0.3, (and consequently C1  1.18), whereas

the LES with b22/bll - -0.E and b33/bll - -0.2, for St - 5, gives C2= 0.411 (and C1
1.306).

If we use the high shear experi•ent of GIiC (151 at St = 11 (published after the TRR

paper) we reach very nearly the same contlus*ons as fcom the LES. Again we presume that the

LES reaches the asymptotic -tate for b22 and b33 faster than the experiment exhibiting a

crossing of b22 and b33 due to anisotropic initWa1 conditions.

Fortunt•tly LRR did not use this procedure with the ChC e-'periment and the proposed

values C I * S. and C2 - 0.4 are close to the present ( nclusions. t~ow, if we inject the

LES Reynolds stresses into the LRR model for Oij we get the results shown on Fig 11.3.5

where 0 22 and 0 33 tend to reduce the difference between b22 anJ b33.

II
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To achieve reconciliation, we must abandon the hypothesis of isotropic dissipation.

Indeed, the dissipation exhibited by the LES (to be precise : the production term of thý

SGS Reynolds stresses) is by far not isotropic. The deviator of cij is shown on fig 11.3.5.

The similarity with bij is striking and means that Oij reduces anisotropy (more citergy is

drained from the stronger ecaponents of uiuJ). Since £33 < C22, the difference between

0 33 and 0 22 must be large to crepte the anisotropy, and to sustain it. must not velish in

the steady state.

These observations on c 22. C 33, 0 22, 0 33 are in accordance with the BF. [(106

simulation (PP 132 - 133, and noticing that the 2 and 3 subscribts must be swaped since

S - duIJ/dx 2 ). They furthermore propose improements of clasqical models, in particular to

account for rotation effects. Of course the LES must overpredict the anisotropy of the

dissipation, but direct simulations also show strong influence of dissipation anisotropy,

(Moon Joo Lee and Reynolds [17] , PP 125 - 126).

To sum-up, since the LRR model performs quite satisfactorily for a variety of test cases,

only slight chasges should be csrefully introduced. But we may consider that the Oij term

of the model represents not only the pressure strain term but also dissipation anisotropy.

ie

Ofi model - P ( u l/ ax1 + au / axi) (Cij -
2

/3c6 ij

as more LUS or DS data is made available for a much larger rumber of nodes in order to

simulate -iery large band width of the spectra, we may expect to -.ode] the teras seperatly

11.4 Temperature fluctuations

As illustrated in part I, EDF is concerned by temperature fluctuations in fluid flows.

This, in relation witb heat discharges, heat transfers or thermal stresses in pipes and

vespels induced by stratified flows. LES can help to model these flows since data on

temperature fluctuations and their correlation with velocity or pressure is scare.

Passive scalar in grid turbulence

The experiment of Siriwat and Warhaft [181 is simulated to test the thermal version of

the code. It cot.sists of a decaying grid turbulence on which a constant average temperature

gradient is superimposed : dT/dx3 ,- ST - 3.68 *C/m. This low value enables to neglect

buoyancy effects.

The velocity variances shown on fig 11.4.1 thus behave as in par 11.2. In the experiment,

various setups are used to iwpose ST, none of which generate zero initial temperature

variances (as done in the LES), therefore only the final stages can be compared berafter.

The thermal fluxes are shown on fig 11.4.2 uT and if-should be zero, but X/M - 700 is a

long way downstream of the grid (M grtd cell size), meaning that only very large structures

are left in turbulent field, thus the sample on which statistics are computeW is too small,

i.e. the number of nodes should be increased.

The previous variables are notalised to give the correlations on fig 11.4.3. Initially wT

is equal to -1 since the temprsature fluctuations are solely produced by the w

fluctuations.

$ wT tends to - .75 while the experiment exhibits a slightly lower value. On fig 11.4.4.

the velocity-temperature tiri-scale ratio is satisfactorily compared as well as the Ti

dissipation (fig 11.4.5). Fig 11.4.6 shows that an asyntotic state is reached for the

Production-dissipation ratio of T, meaning it grows linearly (as k in the homogeneous

shear case).



Stable - unstable stratification

, XNow the same computation is re-run considering buoyancy effects in both the btable sn'
unstable case. io� velocity variances are shown on fig 11.4.7 : in the stable case

decreases faster than in the previous computation as well as the other two diagonal

components (7ia pressure-strain) but the anisotropy seems to level at a moderate val te,

whereas in the unstable case, w- becomes 10 times larger than u7 an v
5
- The thermal flux W1

associated with production, after reactlng a maximum goes back to zero in the ,table case,

while it seems to be unlimited in the unstable case.

In the standard k- c model, the buoyancy production term G 1 - 1/2 wT S T is dircctly

entered in the k equation while it is multiplied by l.(!/k).(l -P 3) in the C equation

(Viollet[19b.¢3 - 0 in the unstable case, J3 ' 1 in the stable case, (see p.5).

Indeed, on fig 11.4.8, it is seen that the C , with I - J3 I balances the other terns

in the equation for the unstable case except Jn the initial state, while in the stable case

all the terms seem to go to zero so the ratio is very scattered. In the unstable case, the

buoyancy production term in the C equation should have the same weight as in the k

equation.

"Vertical stratification"

In industrial problems, we often have to deal with cases whete the temperature gradient

is perpendicular (horizontal) to the gravity, This appears in vertical buoyant jets or

vertical heated (or cooled) walls (see par. 1.5).

In this case, buoyancy production is not usually accounted for in the standa'd k- C model

whereas the equations show indirect production.

Of course, this effect cannot be separated from shear in experiments because as soon as a

horizontal temperature gradient and buoyaucy are considered, natural convection and shear

in the mean flow appeor.

In the LES, however, we can "switch off" gravity in the mean flow whilt keeping it in the

fluctuation. The mean velocity then stays zero while the fluctuations obey the following

equations.

d u1
2

/dt - 0 11 - ell

d -- 7/dt - 2 B u 3 T g + 0 33 - C33j(B : thermal expansion parameter)
d iTjf/dt - - __u T + 0 IT - 1IT, (ST = dT/dxl)

d u 3T/dt - - u-l=• S T + B T2 g + 0 3T - c3T

d ul--'/dt - B U• g + 0 13 - c13

Starting from an isotropic state, we will find, with ST > 0

U1T < 0 -- > 73 < 0 > u 0 -> u increases.

This qualitative evolution is well reproduced by the LES results ehown on fig 11.3.6.

Note that UT responds immediatly due to the preduction U,
2 

S u T and u2Z respoad more

slowly since slu-3 Y2 and uT are initially zero. At a later stage u 2
2 

and u 1
2 

follow u32

meaning that 0 22 and 0 33 have again strong effects.

Pressure-strain and pressure-temperature correlations will be analysed and compared to

models as the case is rerun with a finer resolution.

• Ž r-.. "-- .-.
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These are only preliminary results and the runs were performed as feasability studies

since, as mentioned, it is felt that 323 point computations provide a too small sample

especially for long runs during which the turbulence scales undergo large changes. Also,

boundary conditions must be carefully reconsidered since the problem is not exactly

homogeneous.

Now being satisfied with the SGS model and numerical scheme, we have just ended speeding

up the code and are starting 643 computations, from which more thorough analysis will be

conducted. Note that changing from 32' to 643 means 8 times more nodes, and if the mesh

step is divided by 2, so should be the time step, meaning the overall computational work is

multiplied by 16 !

CONCLUSION

Computer power and numerical schemes are rapidly improving, allowing the use of more

elaborate turbulence models and simulations. As full 3D flows are considered, PSY or ASM

will have to replace the EVM since it is often the Reynolds stresses that dr ve the

secondary motions (Ohich in turn modify the principal motion). Near wall low Re modelling

will be very usefull for aerodynamics and heat transfer computations, and merge the

elliptic and boundary la yer approaches. We can conjecture that within a few years a

consensus will be reached concerning numerical problems and that efforts in fluid mechanics

will be devoted to the eternal problem of turbulence modelling. This tendancy is

illustrated by recent conferences in which authors now say little about numerics and go

directly to the physical analysis of their results.

There seems to have been a gap between LES or DS computors, which have been more

interested in the physics and analysis of turbulence in terms of structures, and the more

engineering area where people have been hoping for enlightenement from LES and DS for one

point closure models (as pointed out by Rodi !Ii) ).

It must be remarked that this gap is being bridged but will require time since it means a

lot of work for the small teams (solitons ?) performing LES or DS. anoeed it requires

- elaborate numerics (accuracy and speed)

- processing of huge amounts of data

- analysis of experimental data (+ guessing the uncertain "initial conditions")

- analysis and use of proposed models

- comparison of numerical data, experience and models

This last item requires more wvrk to defilter the LES recults (and improve the SGS

model). This might be solved by completing the spectra below nut off wave number as

proposed by Aupoix [20 or Bertoglio [27] , or using a I eq model in conjunction with

algebratc stress modelling.

"Numerical data" could be used more rapidly if more credit could be given to it from

other people than the computor himself, and if it could be widely used in conjunction with

experiment by all turbulence modelers. For this, publicat ms are not sufficient and it

might be time for LES computors to open "binary data banks':.

Finally, we hope that larger computations .ill tell whether anisotropy of dissipation is

due to too low resolution or if it is pnrt of the turbulence characteristics, even at high

Re numbers.

._.
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APPENDIX A

THE COXPLETH REPORT WAS DISTRIBUTED AT THE VKI COURSE

AND IS AVAILABLE AT EDP-LIH (ref HE 44.86.21)

VIOLLET P.L.

ON THE NUMERICAL MODELLING OF

STRATIFIED FLOWS

Conference inirtde ou Symposium

c Physical Processes in Estuaries v

Delft, 9-12 Sept. 1986
HE 44,86.21

ReAn...

Ce papier presente une revue des modiles de turbulence

applicable aux icoulements stratifies, et montre commeat ces

modiles riagissent vis-S-vis d'une situation de stratification

stable ou instable. Le cas test d'un icoulement bicouche est

pr~senti en dxtails.

Abstracn

The paper presents a review of turbulence models for stratified

flows and shows how these models react to stable or unstable

stratification phenomena. The test-case of a two-layers flow

is described in details.

MOTS-CLES:

Mecanique des fluides 1 Transfert de chaleur I Ecoulement turbulent I
Ecoulem.nt stratifie I Mesure I Resolution numnrique I Modile de
turbulence ! Modele k . epsilon.
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HOMOGENEOUS TURBULENCE

TWO-POINT CLOSURES AND APPLICATIONS TO GNE-POINT CLOSURES

B. AUPOIX

ONERA/CERT
Department of Atrothermodynamics

2 avenue E. 3elin - 31055 TOULOUSE Cedex (FRANCE)

SUMMARY

This paper deals with homogeneous, i.e. translation invar!ant, turbulence. Homogeneous turbulence
is an ideal situation in which the mean field is unaffected by the turbulent motion, so that the turbulent
motion can be studied solely with a prescribed mean field. Such a flow can nearly be achieved in very sim-
ple experimental set-ups.

FOURIER transforms are convenient to study the turbulent motion. The momentum equation shows that
the evolution of the turbulent motion is due, on the one hand, to the action of turbulence upon itself
(non linear effects) and, on the other hand, to the action of the mean field upon turbulence (linear effects).
The linear problem can be solved with the help of a GREEN function. Some important solutions are then stu-
died. The non linear problem is open and requires modelling. Various approaches are described, in the sim-
ple case of homogeneous isotropic turbulence.

The resolution of the transport equation for the REYNOLDS stresses requires the closure of the
press-ire strain terms and of the dissipation equation. Application of two-point closures to tne modelling
of these terms is studied in the last part.

Part I - HOMOGENEOUS TURBULENCE - INTRODUCTION TO TWO-POINT CLOSURES

I - HOMOGENEOUS TURBULENCE

1.1. Introduction

We shall restrict our study to incompressible flows, without buoyancy effectb, passive scalar ...
The flow is then governed by the continuity and momentum equations which read, in a cartesian reference
frame :5

-- •0

ax i

z i i 5ap iZ

The instantaneous velocity field U can be decomposed in variousways to study the turbulent motion.
The standard decomposition proposed by REYNOLDS is very suitable for engineering purpose. The flow varic-
bles (velocity, pressure) are split into a mean part defined as an ensemble average and a fluctuation as

U - u+ u' U

P + p, p

Equazions for the mean and the fluctuating motions can be derived from the above continuity and
momentum equations. They read aUi

Uit UiA p I xP lxUix lx iu u

-- 0axi

auI u i_

_ (+u u - <ujui>)

I .0

3x

The .lon linear advection term couples the evolutions of the mean and fluctuating motions. In the
mean field momentum equation, the turbulent motion appears through the REYNOLDS stress <uiu•> while theS mean I ield appears in the fluctuating fie_ momentum equation. The two fields are interconnected and must

, be studied together.
The mean field equations can be unaffected by the turbulent motion if the menNOLDS stresses and,

more generally, all the statistical variables, are independent of the point, i.e. if the flow is trans-
lation Invariant.

________________________i
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The interesting feature of homogeneous turbulence is that the mean field is decoupled from the
turbulent motion. The mean field can then be prescriben to study solely the evolution of the turbulent

motion.

1.2. Constraints on the mean field

A translation invariant turbulent field can only be obtained with special mean fields. The cons-
traints on the mean field have been pointed out by CRAYA /I/.

The first constraint is that the mean flow must satisfy the continuity equation : - 0.
ai

The s2cond constraint can be derived by writing that any correlation is translation invariant.
For the sake of clarity, we just impose to the REYNOLDS stress to be translation Invariant. The demonstra-
tion for a higher level, multi-point correlation, will be analogous.

The transport equation fo: the REYNOLDS stress <u'uj> is constructed by multiplying the momentum
equation for u by u', the momentus equation for u ' by u, adding and avez-_ing. After some algebri, it

*reads I SaUi
a at a~ Iauu u'u'> > 2uu

where 6j Is the ONECKER tensr. k j >

j i'

a <~u'6 u 'd> - .B )aigtedrvtv
The REYNOLDS stress must be translation invariant, i.e. aT<ulu - 0. By taking the derivative

of the above transport equation and using the translation invariance of all correlations, the above equa-
tion reduces to

apU aeu0 = - <ui u - ax <oU ' > ax k, J, mM)

Homogeneous turbulence can exist only when che mean field has constant velocity gradients.

The third constraint can be derived from the HELMHOLTZ equation. As the mean flow is unaffected
by the turbulent motion, the momentum equation for the mean flow reads

rt + 1-XU ýVp+1 2
Sc, taking the curl of the momentum equation and taking into account the fact that the velocity

gradient is constant over space lead to the equation

a curl U + cur) U.Vb -

For steady mean flows, to which we shall restrict our study, this relation imposes to the mean
field to be either a pure strain (curl U - 0) :

0 0 o-(=4l)d

or a plane strain plus a rotation, the rotation axis being normal to the plane of the strain, i.e.

O 0 0

10 } d strain
ax0 -d W- rotation

An important case corresponds to the equality of the strain and rotation rates. In a reference
frame rotated by 45 degrees, the velocity gradient reduces to

0 0 0

tax 0 00 0

i.e. a plane shear flow. The itudy of sheared flow is important as shear appears in a lot of inhomogeneous
situations of practical interest such as bouncary layers, wakes ...

* iI
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S~1.3. Nearly homogeneous turbulence

i Homogeneous turbulence, assdscribed above, does not exist. The flow is always bounded, so there

is only a restricted domain -non which the turbulent flow is translation invarlant. The turbulent motion
is thus homol-eneous only for a restricted ran8•: of length scales. However, If the %vmain is large enough,
compared with the turbulence length scales, it exists a core where the turbulent mction is hardly affected

by the boundaries and in which the flow can be assumed to be homogeneous.

In most experiments, turbulence is generated by a grid in a wind tunnel. As the flow moves down-
stream, the turbulent field evolves continuously. Turbulence statistics are not translation invariant.
However, if the evolution length scale of the turbulence statistics is large when compared with the turbu-
lence length scales, the turbulent flow can be assumed to be locally translation Invariant. So nearly ho-
mogeneous turbulence can be obtained experimentally.

1.4. Some nearly homogeneous flow experimentr

The various turbulent flow fields can be classified by looking at the REYNOLDS stress transport
equation, which reads, for homogeneous flows :

-<uiu?> + U <u'uu a u <u-u L
at ii <It'J <u- k axk k ax

au1 .aI j j au, au

1.4.1. Flows without mean velocltz. radients

The simplest cases correspond to the absence of mean velocity gradient. The turbulent field then
decays and turbulence is converted into heat by the viscous effects.

The first case is the decay of isotropic turbulence. Turbulence is isotropic when all the turbu-
lence statistics are independent of the direction, i.e. rotation invariant. Therefore. <u(uju> (61j/

3
) q

2

where q
2 

- <u'u'> is twice the turbulent kinetic energy. The REYNOLDS stress equation then reduces to a
transport equation for the turbulent kinetic energy

a-~i2+ ~q a uau,at22 2 1

Isotropic turbulence is difficult t' obtain experimentally. A mean f1ow without any velocity gra-
dient can be obtained in a constant area duct (or, more precisely, slightly diverging to account for wall
boundary layer displacement effect). The standard experimental set-up used by most experimentalists con-
sists in a turbulence producing grid placed ahead of the test section. However grids produce anisotropic
turbulence.

COMTE-BELLOT and CORRSIN /2, 3/ proposed to improve the isotropy of grid-generated turbulence with
the help of a small contra-tion downstream of the grid and before the test section (figure 1). Besides the
extensive study of COMTE-BELLOT and CORRSIN, we can mention the works of STEWART and TOWNSEND /4/, VAN ATTA
et al /5, 6, 7, 8/ who studied energy transfer and multi-p,)int time correlations. GAD-EL-HAK and CORRSIN
/9/ used a jet grid to improve the flow homogeneity. At last, we must mention the works by TSUJI /10, 11/
,nd KELLOG aud CORRSIN /12/ who used *wo successive grids to produce turbulence with perturbed energy
spectra.

The second case of homogeneous flow without mean velocity gradient is the return to Isotropy of
anisotropic turbulence. The turbulence anisotropy can be due to the grid but is often enlarged through a
distorting duct. At the end of the distorting duct, a constant area duct in which there is no mean ,eloctr:
gradient is placed (figure 2). Experiments show that the turbulence decays in absence of mean velocitL:
gradient. The REYNOLDS stresses are then governed by the equation :

a<iu'u'> + D, <u,'u!> - *zP (au A + - 2v~ Iu:I

and the r~le of both the viscous term and the pressure-strain correlations is to decrease the flow aniso-
tropy during decay. Such experiments have been conducted by UBEROI /13/, TUCKER and REYNOLDS /14/, GENCE
and MATHIEU /15/, CHOI /16/ or LE PENVEN et al /17/.

1.4.2. Solid oEj!j2R

In the presence of mean velocity gradients, the transport equation for the turbulent kinetic
energy reads a 1 q

2+ au au,-av_ q2 + u, 2--' " 1 <un> 1 -••j•j

at2 ax2 X, ax ax ax3
The first term of the RHS represents the production of turbulent kinetic energy by action of the

mean velocity gradient on the REYNOLDS stresses. As the REYNOLDS stress tensor is symmetric, only the sym-
metric part of the mean velocity gradient acts to produce turbulent kinetic energy, i.e. strain produces
turbulent kinetic energy while rotation does not. So turbulence submitted to solid body rotation can only
decay. Turbulence submitted to solid body rotation is an interesting flow for two reasons : on the one hand,
rotation exists in a large variety of flows such as geophysical flows or turbomachinery and, on the second
hand, it is a very simple homogeneous flow with mean velocity gradient.

-----~-~ _______________________________________ .------ ___________________ -
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Experiments were first conducted by TRAUGOTT /18/ in the flow between two concentric cylin-
ders. Flow is set into rotation by an impeller at the entrance of the rotating annulus test section.
IBBETSON and TRITTON /19/ moved two perforated plates into a rotating water tank to generate the tur-
bulent motion and then studied the time decay of the turbulence. Unfortunatoly, homogeneity conditions
do not seem to be fulfilled in their experiment. HOFFINGER et al /20, 21/ have done an extensive study
in a rotating water tank. Turbulence is produced by a vibrating grid at " e boctom of the tank and dis-
tance from the grid is identified with time of evolution of the turbulence. The most extensive experi-
ments have been conducted by WIGELAND and NAGIB. The air flow is set into rotation by passing through
a rotating honeycomb and, downstream in the rotating test section, turbulence is generated by a grid
(figure 3). Despite Important boundary layers, there remains a central core in which homogeneity is
satisfied in all the test section. Tests have been none for various grids. streanwise velocity and
rotation rates. A similar experiment, with a larger and longer test section. has been performed at ONERA
by L. JACQOIN /112/.

1.4.3. Plane strain

The next class of homogeneous flows is strained flows. Such a flow is energy producing, so that
no term can now be suppressed in the transport equations for the turbulent REYNOLDS stresses and the tur-
bulent kinetic energy. Energy can be decaying or increasing according to the balance between production
due to the meanstrain and dissipation by viscous effects, i.e. grossly to the ratio between the strain and
turbulence time scales.

The simplest strained flow is the plane strain in which turbulence is compressed in one direc-
tion while expanded in the other. Plane strain can be obtained with constant area duct of evolving plan
form (figure 2). The form of the duct to produce a constant strain was studied by TOWNSEND /23/ who per-
formed one of the first experiments. Further experiments have been performed by TUCKER and REYNOLDS /14,
24/, MARECHAL /2J/ and GENCE and MATHIEU /26/. An interesting feature of this last experiment is to im-
pose successively two plane strains of different principal axis (figure 4).

1.4.4. Three-dimensionalstrain

Plane strain is just a peculiar case. More generally, strained flows can be expanding in one
(resp. two) direction(s) while compressing in the other two (resp. one) directions. The form of duct which
produces such mean velocity gradients has been studied by REYNOLDS and TUCKER /24/ who performed several
three-dimensional strain experiments. Other experiments, for axisymmetric strain, i.e. having two equal
compressions, have been performed by UBLPOI et al /13, 27/, RANJEE et al /28, 29/ or TAN ATICHAT /30/.

1.4.5. Shear

As shown previously, homogeneous flow can be obtained for any combination of a plane strain and
a rotation, the axis of which is normal to the plane of strain. A peculiar case occurs when the strain and
the rotation are equal, purely sheared flow is then obtained. Shear plays an important r~le as it occurs in
a lot of practical, inhomogeneous flows such as boundary layers, wakes ... , so it has been widely studied.
Various devices have been used to generate a sheared flow. ROSE /31/ first used a grid of varying solidity
to produce such a flow. Later, he used a honeycomb with cell axes parallel to the flow direction and va-
riablecell length as a shear generator (figure 5) /32/. CHAMPAGNE et al /33/ used an .ray of parallel,
equal width channels with adjustable internal resistances made of screens (figure 6). This apparatus was
later used by HARRIS et al /34/, TAVOULARIS et al /35, 36/ while MULHEARN and LUSTON /137/ used a varying
solidity grid.

In the first experiments of ROSE, MULHEARN or CHAMPAGNE, the shear was weak, the energy produc-
tion did not balance the viscous dissipation and the turbulence decayed. In the experiments of HARRIS or
TAVOILARTS, strone shear is obtained and the turbulent kinetic energy increases.

1.4.6. Strain + rotation

Shear is just a peculiar case of the combination of a plane strain d a rotation. However, the
combination of a plane strain and a rotation of different strenghts has been ,.frdly studied. SREENIVASAN
/38/ added a distorting duct to a sheared flow experiment to study the influence of extra rate of strain
on sheared turbulence. Another experiment with various strain/rotation ratios is under development at ONERA.

Readers interested in homogeneous turbulence exneriments may also look at the review papers by
FERZIGER /39/ and GENCE /40/.

1.5. Reduction to a time problem

The continuity and momentum equations in a moving reference frame read

•0

- Ui- t r- 32U

at a x1  p p q 2 ax, ei P OX~

where w are the components of the rotation of the moving reference frame ; w, its modulus ; r, the
p

distance between the considered point and the rotation axis ; c , the alternating RICCI tensor and ri,
the entrainment acceleration term due to the translation of the rilerence frame along the xi axis.

the REYNOLDS decomposition is applied in this moving reference frame, the equations for the
fluctuation read:

*1 __ _I
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The equations for the fluctuation are thus the same in a fixed reference frame and in a moving
reference frame if the rotation of the reference frame is added to the mean velocity gradient, in order to
recover the mean velocity gradient which exists in the fixed reference frame.

Therefore, the evolution of homogeneous turbulence can be studied as well in a fixed reference
frame as in a moving reference frame.

For a mean flow without velocity gradient, a reference frame moving with the flo, as suggested
by G.I. TAYLOR, is a convenient reference frame to study the evolution of the turbulent mozion. The space
evolution problem is then reduced to a time evolution problem.

When there exist velocity gradients, a reference frame moving with the mean flow along a selected
streamline is still a good candidate. The mean velocity field can be written as

where U° is the velocity of the origin which is assumed to be conveyed by the mean flow along a stream-
line. Foz the sake of simplicity, the reference frame is translated and not rotated. The momentum equation
then becomes, for homogeneous turbulence :

it 0 Ui 120 i i 5 -Li IZ
't ax I ax xx xt. as xt maxm ax

wheie the LHS is the time derivative in the moving reference frame, i.e. :

_ -i L ý -Uz i it .. ý':i
dt " xi a Z ax f mE x a

The problem is so reduced to a time evolution problem in a reference frame linked to the flow.

2 - SPECTRAL APPROACH OF TURBULENCE

2.1. Introduction

Standard models of turbulence only deal with one-point statistics such as the REYNOLDS stresses
or the turbulent kinetic energy. One-point statistics cannot give direct information about the characteris-
tic turbulent length scales. To get information about these length scales and to know how eddies of dif-
ferent sizes contribute to the turbulent motion, one has to look at multi-point statistics. Dealing with
high order, multi-point correlations rapidly become cumbersome and even inextricable. Two-point correla-
tions are sufficient to get information.

As pointed out by BATCHELOR /41/, FOURIER analysis is a suitable tool to bring into evidence the
r~le of the different length scales in a turbulent motion. CRAYA /I/ derived the equation for two-point
correlations and then transformed it in FOURIER space. We shall prefer to immediately FOURIER transform the
NAVIER equations to derive more easily the governing equation for any statibtics in FOURIER svace.

2.2. FOURIER transform

The FOURIER tr:nsform of a function f(ý) is defined as

I( -C-Ax•)d 3
X

where x is the position vector in physical space and k the wave vector. Reciprocally, the function f(x) can
be obtained from its FOURIER transform as :

f(x) j1 f(h) e -- d'k

Frem the definition of FOURIER transform, it is obvious that, if a is a constant

a f(x) - CL f (k)
Moreover, if f is real :(- k) - i*(

where the asterisk denotes the complex conjugate.

Two other important properties of FOURIER transform can be found by looking at derivatives. From
the definition of derivatives, it can be easily eemonstrated that

- i k f(k)

X m

ak IxMf!
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At last, the FOURIER transformation changes product in one space into convolution in the other
£• space. The FOURIER transform of a product then reads

f g~t f~s JJ f~) _q) 6 (k q )

where 6 is the DIRAC distribution 6 (k) - C2I J k- d~ x which is zero when its argument is non zero

and infinite when its argument is zero in such a way as to make

6(k) dk -I

qf shall use the incorrect, compatted rotation

Ifg(k) - i(p) g(t - p) d52

For the sake of simplicity, we shall now omit to indicate FOURIER transform. The presence of
"space coordinates x or of wave vectors k is assumed to be enough to know whether the equation is written
in physical or FOURIER space.

2.3. FOURIER transform of the equations for the turbulent motion

The turbulent motion is ruled by the continuity and momentum equations. The continuity equation

ai _

is easily FOURIER transformed as :
I kI u' f 0 or ki u,' - 0

This means that, in FOURIER space, the continuity equation imposes to the velocity fitld u(k) to be
in a plane normal to the wave vector k. This property is often used to simplify calculations.

We have expressed the momentum equation for the turbulent motion as
du,# I a e u, 'U_.•.i ul aUU UL aUl

_2 V _u Ii - ?- u
d-t aX it -xt 0 .M ax M axi
With the above mentioned properties )f the FOURIER transforuatIon, this equation can be written

in FOURIER space as

du' I 1 1S.-i t -I kI u ai _ -x -

The last term of the RHS can be developed as

2U1  ul a ~ I~ i~ I u

m m m a ma m m

as the mean velocity gradient satisfies the continuity equation.

A POISSON equation for the pressure can be obtained by taking the divergence of the momentum
equation (i.e. multiplying by iki). With the help of the continuity equation, the POISSON equation reads

0 =k2
2

p' 2i k A ' +k k'k -

P - k L - It, !,U' uIi u,(p) dpi

in physical space, the pressure at a given point x can be obtained, with the help of the POISSON
equation, as an integral of the velocity field over the whole space. In FOURIER space, on the other hand,
the pressure at wave vt ctor k can be expressed in terms of the velocity rields u and u 9 u at wave vector k.
The pressure can therefore be said local in FOURIER space.

The r6le of the pressure term can be enlightened by looking at the momentum equation written in
compact form :

A1 + i kI = 0

I i p
where A stands for all the other terms. The POISSON equation now reads

ki Ai + i k
2  " 0

If the pressure is eliminated, the momentum equation can be rewritten as

I - )• AI _j)k) A -0

Ai - 7Z IR~ W -J

The tensor Ai4 c(k) corresponds to the projection on the plane normal to the wave vector k as

4j(k) ki - Aij(k) ,j - 0. 1h1 continuity equation imposes to the velocity vector u(k) to be normal to

the wave vectnr k. The terms •- and vk
2
ui satisfy the continuity constraint while the other terms 2 u°

aU aku' and u 0 u do not.
3x ak

__
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The pressure term projects all these terms on the planeI
normal to the wave vactor k ; the r0le of tie pressure
is to ensure continuity.

au/at

The momentum equation can be rewritten by eliminating the pressar.: term. This can be done either
by taking th. pressure term from the POISSON equation and replaciag it in the momentum equation or directly
by multiplying the momentum equation by A (k). The final form of the momentum equation reads

di a k k BU aU aku:-:1 + 2•4;u U- k .k ' + L" - i k X (h) Jj (h-p) uj(p d'
dt+ kUi UZw~1 k x, Z a3x m k m iii _)di

The advantage of this form for the momentum equation, with pressure term removed, is that the
velocity field is now the only unknown. The pressure field, if needed, can be derived from the velocity
field with the help of the POISSON equdtion.

The momentum equation czn be written, in symbolic form, as

+ V kc
2
) j (h) 2!' + 'U Iku-- u Q u

By taking the divergence and using the relation k iij = 0, we obtain

(d + Vk2) k - 0
ktiui'

If the flow field initially satisfies the continuity constraint, the solution of the momentum
equation with pressure term removed will satisfy the continuity constraint at all times. The above form of
the momentum equation is thus the only equation to consider as it includes the continuity condition.

2.4. Linear and non linear effects

The terms involved in the momentum equation can be separated into two distinct classes. If the
last term is removed, the truncated momentum equation reads :

31 Iuj(k) kI kk aI
a I(k) + - (hi - u'(k) +2 : u'(k)

In this truncated equation, only the velocity field at wave vector k appears and all operators
are linear operators. The influence of the viscosity and of the mean velocity gradient can therefore be
called linear effects. These effects only involve the velocity field at the given wave vector.

The convolution term - i k. Aij q) J uj(h - p) uj(j) d
3
2  represents the action of the turbulent

motion upon itself. According to the product under the integral, it will be called non linear effect. An
important property of this convolution integral is that it links the evolution of various modes. The flow
field at wave vector k interacts with all wave vectors p and • such ask- p +. These interactions are

called triadic interactions. The set of wave vectors p and _ which can form a
triangle with wave vector k is a restricted set. According to triangle relations,/ their modulus, i.e. the wave numbers, must satisfy the inequalities

p +q 2:k Z lp- q I

where the equalities are satisfied when the triangle degenerates into" /
a line segment. The wave vectors which can contribute to triadic
interactions with a given wave vector must therefore lie into a semi-
infinite rectangle limited by the lines k - p + q, k - p - q, k - q - p.

It must be noticed that, according to the POISSON equation, the pressure term involves linear
and non linear efxects.

The momentum equation has been split into three terms, the viscous and mean velocity gradient
terms which correspond to linear effects and the non linear turbulence-turbulence interaction. The charac-

teristic time scales are (•*) for the viscous effect and --Si for the mean velocity gradient action.

As concerns the turbulence/turbulence interaction, a characteristic time scale can be formed with the
energy spectrum E(k) we shall define later and the wave number which are the basic parameters. Dimensional
analysis gives a time scale of the form (kSE(k))- With these time scales, the respective r5le of the
three effects can be compared.

Z:-



3-8

In the absence of sean velocity gradient, only the viscous and non linear effects are to be com-

pared. The time scale ratio reads v /£. The viscous effect is the leading effecL when A is small compared

to the fluid viscosity, i.e. when the turbulent REYNOLDS number is small. This can occur at the end of the
decay process when the turbulent kinetic energy is decreasing towards zero. As the turbulence level is low,
E is small and the non lineer effect is negligible when compared with the viscous effect. Another possibi-
lity in to look at very large wave numbers. As the wzve number k increases, the ratio E/k decreasec, other-
wise the turbulent kinetic energy will be infinite. Therefore, at a given wavenumber, viscous effects and
non linear effects balance. Above this wave number, the flow is governed by viscous effects. Besides these
two cases, i.e. low energy or high wave numbers, the non linear turbulence/turbulence interaction is the )ea-
ding tern.

)1 andIn presence of mean velocity gradient, we will only compare the mean velocity gradient time scale
f))" slid the non linear time sc-le (k

3
E(k)) . For a given turbulent field, I.e. for a given energy spec-

tru, the balance will depend upon the strength of the mean velocity gradient.If the velocity gradient is
weak, the linear effect only dominares for small wave numbers while, if the velocity gradient is strong,
the linear effect has a leading r6li over a broad part of the turbulent scales. The second case is known
as rapid distortion ; the mean velocity gradient time scale is smaller than the turbulence time scale and
the turbulent motion evolves only under the icfluence of the mean velocity gradient This kind of behaviour
Is however restricted to a short time period as the turbulence tends to adjust its tims scale to the nean
velocity gradient time scales so that, In fine, linear and non linear effects will balance. However, thc
study of the rapid distortion plays an important r6le in turbulence theories.

2.3. Moments

We shall now turn our attenticn to statistical properties of turbulence. Frum the REYNOLDS decom-
position of the flow into an average value and a fluctuation, it is obvious that <u Ik)> q 0.

The first interesting statistical variable is the second order moment <u:(k) u'(E)>. According to
the FvURIER transform definition, it can be expressed as : _ -

<u'(k) u' (P)> - 1 < d~x['. ~ eiPX da>
i- j T27 < f,u(i) e uij

where x and y are independent variables, so

<u'(k) ui(2)> z ( f <u-i(a ) -i(k £ ')

The two variables x at.d y can be replaced by I and x + r. As the flow is homogeneous, the two
point correlation under the integral only depend6 upon the separation vector r, so

I <u' ' e-lr e-I(dk+ _ 3)X" (] + p) r <u'u'(E)> -PL d
3
r

<ujI(k) ujE)) - ( <u(uj(l)> e-- d,1o6 + 1 f-

The homogeneity condition thus allows only a restricted set of non zero second order moments.

For the sake of simplicity, we shall note then

oij(h) - <uj(£) ul(j)> 6(k + 2)

The tensor J (k) can be interpreted as the FOURIER transform of the two-point correlation
<u'(Z) u'(E + r)>

The continuity equation imposes : ki oiJ q) " kj - i (k) - 0

The two-point correlation only depends upon the separation vector. Moreover, <u(,c) u;(X + 1P
<uj(x) u4(I - 1)> and consequently :

oj()- 0 si ( k)

At last, the velocity field or the two-point correlation are real function, so

oij(- h) - Olj*(k)

These properties can be used to construct a simpler description of the second order moment tensor.
Following CRAYA's ideas /1/, we introduce a reference frame linked to the wave vector k to take advantage of
the continuity equation. We shall use a tri-orthogonal reference frame with basis vectors a, 8 and c; ls
parallel to the wave vector k. The two-point correlation can be expressed in this referenceefr-ame as

The continuity constraint imposes Pi 0. a5QA - oR - 0 so that • and Rj can he expressed as

-jN, 5~ + S

-j S, a i + N2 y5

__%
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The symmetry and reality constraints impose

NI(_ - N(!) - Nl*(k)

N2(_ k) - N2 (9) - N2 *(h)

S(- k) - - S'(k) - - S*(k)

S'(- t) - - S(k) - - S'*()

* so that the second order moment can be expressed as
r ( - HI Si j + S + S* *i + N2 Yi YJ

where N, and N2 are real and even with respect to k while S(- k) - - S*(k). S can be real and, therefore,

0 can be real only if <u'u'(r)> - <uui(- r)>. This condition is fairly satisfied by grid turbulence. Thus,

eij(k) -Oij(- k) - ji(k) - 0ij*(k), so0ij(k) is real and symmetric.

The second order moment, wh:ch has a priori nine different components, has been reduced to three
independent variables with the use of a suitably chosen reference frame. CRAYA AI/ has proposed the use of
a reference frame linked to the wave vector and has derived all the algebra needed to easily use tbhs refe-
rence frame. This reference frame is given in Appendix A.

The interpretation of second order moment as the FOURIER transferm of two-point correlations en-
lightens the physical meaning of the wave vector. In homogeneous turbulence, statistics depend only upoi. the
separation vectors and not upon the location. Wave vectors are the reciprocal of separation vectors, i.e.
they are related to the size and the direction of the turbulent structure which contribute to the turbulent
motion. The study in FOURILR space is thus an analysis of the contribution of turbulent structures according
to their sizes and orientations.

A similar analysis can be conducted for the third order moment <u'(k) uj2) u'(S)> /I/. Pere again
the homogeneity imposes ]t + + -- 0 and this moment -'in be interpreted as the JOURtER transform of three-
point correlation with respect to two separation vector ;.Similarly, the third order tensor can be reduced to
a restricted set of constants. We shall use the notatici :

i <~() j() t()>- ijz( . _) 6 (k + p.+ _q)

The continuity equation thus imposes :

(p, + q,) 0i jjip ) 0- Pj iJ( a) - q1 ji &, _) - 0

2.6. Evolution equation for the second order moment

BURGES and HITCHER /42/ and CRAYA /I/ have derive] transport equations for the second and third
order moments. They first obtained equations for the two- at. three-rrint correlations and then FOURIER
transformed these equations. A more convenient way, as proposed by CAMBON et al /43/, is to derive these
equations from the FOURIER transformed momentum equation. The transoort equation for the second order moment
is obtained by mult.plying the momentum equation for u,(k' by u'(- k), multiplying the momentum equation for
u,(- k) by u•(k), adding and taking averages. It reads':

du aU aU k
t 1 (k) +2vk

2  
(~k) ( k)i -j (k , U + 2 m (k Oj) + kj (!E~))

au a
+ 1 (k1in , 'kS)) +At'(k) km ( ) d

3
R

axt ik (m -ii'- j~mp
2

+ a J() * I(,k) d3k
+l (k) k mi(t. , -d

bhe transport equation for the third order moment can be obtained similarly. As we shall not use
it in the general. cz=c, w rafe the reader to refarenza /l.

2.7. Connections with one-point closures

The use of FOURIER space enables us to get information on the contributions of eddies of different
scales to the turbulent motion. On the other hand, it leads to an increasing number of unknowns so that it
would require enormous computational time in complex flows.

One-point closures, dealing only with one-point statistics . physical space, are more suitable
to study complex flows. It is important to know what moment to study in FOURIER space to obtain information
on the unknowns in one-point closures.

One-point closures are aimed at computing the REYNOLDS stress <u uI>. From the reciprocal FOURIER
transform, two-point correlations are obtained as :

<ulu'(r)> - ! 0J(k) e-E d'k

S... . . . .... . ...... . . . ;._ -
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and so the REYNOLDS stresses can be derived, for zero separation, as

<uIuj> - J ij(k) d
3
k

The second order moment contains the information about the contribution of each wave vector to the
REYNOLDS stresses. The second order moments can be interpreted as the "spectrum" of the REYNOLDS stresses.
Their knodledge is a priori sufficient to derive useful information for one-point closures.

A variable used ýn most one-point closure model is the turbulent kinetic energy I q
2 

. L <(U>.
It is obvious that 1 q

2 -f 2 iilk) d'k. However, it is customary not to look at the contribution of each

wave vector to the kinetic energy but to consider the contribution of each wave number. The energy spectrum

is then defined as an integral over the sphere of radius k

E(k) - 0 J i dA(k)

and the turbulent kinetic energy is thus obtained asI:

1 q
2 

- E(k) dk

As the second order moments can be interpreted as the spectrum of the REYNOLDS stresses, it is
interesting to compare the transport equation for both quantities. With the homogeneity assumption, the
transport equation for the REYNOLDS stresses reads

BuJ * a a u au, au,
d <u '-< -. <u'u < - i > -+- 2vIi:I

_u >_u <ulqi ax
dt il uk juk'c F, + PP axj ax a

From the relation between the REYNOLDS stresses and the second order moments, the time derivative
terms can be connected asSd 'u >

• ulu j > d t 01 Q Ej ) d 'k
dt ii d

and also k U - U k

-C k k- aU i -~k d~k

uhich represents the production of turbulence by action of the velocity gradient upon the REYNOLDS stresses,
i.e. a kinetic energy exchange between the mean flow and the turbulent motion.

The connection between the viscous terms is obvious as
au, ,u'

2v- 2 I < > 2\,k
2 

q1 (_h) dk3 xt axt a~'
The contribution to the pressure strain correlation at wave number k can be obtained by deriving

the pressure from the POISSON equation as k, (DO . t - Qk'(

p 21 uui - p) u,(p) d'2

The pressure strain correlation can thus be obtained as

au' au k k JJd - klkZk
2eI - i f t-u(

> ax J k 0 m - -p- m h) d3p d k

Each term in the above equition is trace-free ; they redistribute the energy among the components
of the turbulent kinetic enerzv. As the rSle of the pressure is to ensure the continuity constraint at the
wave vector level or, in other words, as the pressure is local in FOURIER space, the pressure strain terms
rcdIstribute energy at the wave vector level. At last, it musa be noticed that the contribution of the
pressure is twofold ; the first term is a linear term due to the action of the mean velocity gradient while
"the second term is a non linear term due to turbulence/turbulence triadic interactions.

2.8. Transrers

The connection between the second order momept equation and the REYNOLDS stress transport equation

has brought into evidence the r~le of various terms in the moment equation. However, the terms

au m _a and O 6
U (kJ a k *p,~p h)dp-)j d

5
2  have not been concerned. As theSO£(ks * t(k)) nd•,km*Em(P, k) de'p .£k £tp

REYNOLDS stress transport equation can be derived from the second order moment equation by integration over
the FOURIER space, the Integrals of these terms are zero. It is easily verified that

J - (km j(k)) d-k - 0

as k 0 ) tends towards zero when k becomes infinite, otherwise correlation of high order derivatives

should be infinite in physical space. The physical meaning of this term will be detailed in the next chapter.

ML
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The study of the other integral is more cumbersome and instructive. Let us start with the basic
t e r m , i .e .

6 t k t Q ) u ( ) u Q

In this term, the wave vectors 2 and a play the same r~le, so this term can be 'ritten in m
symmetric form as

q (++ ) (ku 2 u'(p) u;(k) + kmu'p ,(q u;(k))

If we now sum the three terms obtained by circular permutation of the three wave vectors, we get

km u•(.) um(p) uj'(k• + k uice) u'(C) )

pm uT((,) u'(2,) u;()) p Tu,(,) u'(k) u+(,)

qe uh,(p) (k) u + Tu(k) u'(,) u;(O

_qus) _ (m , _q

The terms are now grouped according to the u term e one of the three groups reads

u,'(p) (k m u,'(2) u;(h) + q.~ uQi'() u;(ý))

and a symmetric group can be formed by permuting the indices i and J. Thus, from the continuity equation,
the sum

u'(p) (km ui'(a) uj(h) + qm u,(2) vj(h))

is null as k + 2b + q 0. Consequently, if we note

T 1(ji.j q) 6 Zi km %.J(p, ji) d
3
k + ýt km J .(p, h) d

3
2

and T ij (h, p' 2)=i 2 2 lj '2

we have Tvr(kt R.2tq) + Tij(ru 2'qo + Tije ( O 2) 0.

Thus,'J i(k. 2' 2) 6(k + 2 + 2)d 2 d3 k -0, as supposed previously.

This part of the triadic interaction does not delete or cread e RsYNa)LDS srresses ; it is just an
exchange of contribution to the REYNOLDS stresses between wave vectors which form a triangle. We shall use
the term of detailed coniservation to emphasize the fact that the conservation holds for any arbitrary triad
of wave vectors.

The two terms we have first studied have zero integrals over the FOURIER apace and do not directly
contribute to the REYNOLDS stress budget. These terms correspond to transfer of the REYNOLDS stress spectrum
between wave vectors, without creation or destruction of the REYNOLDS strers. They are called transfer terms.
The f irst term is due to the actionof the mean velocity gradient and is a linear effect. As will be shown
below, this term represents the drift of eddier in the FOURIER space as they are distorted by tha mean velocity
gradient. The transfer due to linear effects teals with neighbouring wave vectors. By contrast, the non
linear transfer concerns all wave vectors which can form a triad, i.e. as shown previously, a band in FOURIER
space.

2.9. Conclusion

The study of the momentum equation has led us to introduce the notions of linear and non linear
effects to characterize the action of the mean velocity gradient upon turbulence and the triadic interactions
between turbulent modes.

The analysiq of the transport equation for the second order moment has brought into evidence the
different ways this moment is altered. Production terms due to the mean velocity gradient create second order
moments. Pressure terms redistribute them among the components of the energy spectrum at a given wave vector
while transfer terms cause exchanges between wave vectors. Both pressure and transfer terms have linear and
non linear parts. At last, viscosity destroys the second order moments and converts the turbulent motion into
heat.

The most striking difference lies between linear and non linear terms. Linear terms only involve
second order moments at a given wave vector. Non linear terms, due to tht triadic interaction, introduce the
third order moment in the second order moment equation. An equation can be derived for the third order moment,
but the non linear term will now introduce fourth order moments and so on, ad infinitum. An infinite hierarchy
of equations can be constructed without closing the problem. Linear terms lead to a closed problem, the
solution of which can be obtained analytically while non linear terms require modelling. Therefore, we shall
study these two problems separately.

'} '
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3 - THE LINER PROBLEM

3.1. Introduction

We have already seen that, if the mean velocity gradient is strong enough, the non linear effects
are negligible with respect to the mean velocity gradient effect. The second order moment equation can then
be reduced to :

au aui aUkm~~d + 2+aj 2 'I 'J ( • 2-• km + kj ý,J + .rm a(mj
Sdt iJ i f ax £ I I+7vk ax £ (km (kij)ax

This simplified equation is known as rapid distortion model. It must be kept in mind that it is
valid over all the wave number range for only a short period of time as the turbulen= field will respond in
such a way that the turbulence time scale will become of the same order of magnitude as the mean velocity
gradient time scale and non linear effects will no longer be negligible.

Rapid distortion has already been studied by various groups. TOWNSEND /44/ and CAMBON /45/ pro-
posed to study the effect of the mean velocity gradient directly on the fluctuating motion. BATCHELOR /46/
gave the solution of the second order moment equation with viscosity term neglected for strained turbulence.
DEISSLER /47/ conducted numerical studies of sheared turbulence. COURSEAU and LOISEAU /48/ gave analytical
solution for turbulence submitted to plane shear or strain and tried to extend the method for third order
moments. LEE rt al /49/ gave an original solution for arbitrary strain. A recent review on rapid distortion
theory for iLhomogeneous flows has been given by SAVILL /III/.

3.2. Solution of the linear problem

For specified initial data, the above linear equation can be integrated by numerical means. Ana-
lytical solutions are howe-.r much more convenient for further theoretical studies.

We shall adopt the methodology proposed by CAMBON et al /45/ as it is more powerful. We shall just
bring into evidence the key ideas of this method. The reader is referred to the original papers /43, 50. '1/
for further details on the calculations.

The first point is to solve the linear problem not for a moment equation but directly for the
fluctuation equation. The fluctuating field at a given time is expressed as a function of the fluctuating
field at the initial time. All moments can thus be constructed and developed in terms of moments at the
initial time. This method is more powerful thaw the classical method which solves the linear problem
only for a given moment equation. The equation to be solved is the momentum equation for the fluctuating
motion with non linear terms discarded, i.e. :

au ia kik 3U a.-- ui ui -j, _k j. l N (ktuj)
m

The second point is the analysis of the termn - - a-c - (kýu They are the FOURIER transform
aui au a-u-, m m

of the advection term -- + xm - -- • in physical space. In physical space, these terms represent the time

derivative in a lagrangian reference plane, i.e. following a mean flow streamline. Similarly, in FOURIER space,
this term corresponds to a time derivative following trajectories in FOURIER space as eddies are stretched
and rotated by the mean velocity gradient. The advec-ion process can be described by the deformation matrix
which links the coordinates of a particule at Lime t to their values at the time origine

xi(t) - Fij(t) xj (t - 0)

or, reciprocally, from the FOURIER transform definition :

k M -FI(t) kj (t -0)

The deformation matrix is easily obtained as

Fij(t -0) 6j

n, L F, (t)dt v.. IJ

This deformation matrix is often used in direct simulations of turbulence to transform the eulerian
reference frame into a lagrangian reference frame (see e.g. ref. /49/ and /52/) In the lagrangian reference
frame, the momentum equation reduces todu[ k kI J

Lu -,+ v k2 ' k k J ,
i k ax - i iu

with u'(t) - uuTF-' k (t - 0)) k -TF-l k (t 0)

The resolution of the above equation proceeds in two steps. The first step is the removal of the
viscosity term. In the simple case without velocity gradient, the wave vector does not depend upon time and
the LHS can be rewritten as

du' 2 \~I + v k2u'. - -kt d(e Utp)
7F it
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In the general case, the time dependence of the wave vector k leads to a more complicated form. The second
step is the use of a GREEN's function to solve the equation. The final solution reads

(k, t) - exp (-V Vin(t) Iýkn) Gjj(k, t) uj(h (t - 0), 0)

where Vin is defined as a time integral of a function of the deformation motion F while the GREEN's function

G is the solution of
SdG kk. aura 3Ui

dt Lk7 3x1Z 2xe ) ,J

with the initial condition Gij(t - 0) - A to satisfy the continuity equation. The use of the CRAYA's

reference frame simplifies the computation of the GREEN's function.

As the linear problem is solved for the fluctuating motion, all moments can be constructed. For
example, the second order moment reads

ij (h) - exp (- 2v V n k&n) Gip(- h, t) Gjq(ý, t) opq(k (t-O))

The solution algorithm developed by CARBON is very powerful as it can treat any mean velocity gra-
dient, any initial condition, and give information about any moment. Of course, solutions previously found
in simple cases are verified by this method.

Let us finally mention some published solutions which can be directly used to test closures.
COURSEAU and LOISEAU /48/ gave the evolutioa of second order moments for an initially isotropic turbulence
submitted to strain or shear. Recently, LEE et al /49/ gave the evolution of the REYNOLDS stresses and vor-
ticity correlations for isotropic turbulence submitted to strain in terms of time series.

3.3. Examples of applications

Rapid distortion theory has been used by BOSCHIERO et al /53/ to study the effects of two succes-
sive plane strains on turbulence in order to design the experiments conducted by GEECE and MATHIEU /26/.
They focused their attention on quantities which can easily be measured in an experiment, mainly the REYNOLDS
stresses <uIuN>. The REYNOLDS stresses can be represented by forming invariants, i.e. reference frame inde-

pendent scalars. The first invariant is the turbulent kinetic energy which is half the trace

1 2 1 2+ +Sq . (<u,2> + <v'
2

> + <w'
2

))

The departure from isotropy of the REYNOLDS stresses can be characterized by the anisotropy tensor
defined as :u'u'

bii q 3
which is a symmetric, second order, tracelesstensor. Due to the CAYLEY-HAMILTON theorem, only two invariants

can be formed with such a tensor, i.e. :

II -tr b
2  

III - tr b
3

where tr indicates the trace.

Rapid distortion theory does not account for non linear effects, so energy transfer and dissipation
are not included in the model. When viscous terms are omitted, energy is conserved ; when viscous terms are
included, the energy decay is poorly predicted at high REYNOLDS numbers as energy transfers are not accounted
for. Consequently, the evolution of the turbulent kinetic energy is badly predicted by the rapid distortion
theory, as shown on figure 7. However, the influence of the relative angle bet.7een two successive plane strains
is brought into evidence by the calculation. Moreover, the evolution of the anisotropy, which is less affec-
ted by the transfer, is qualitatively well reproduced by the rapid distortion theory. It must be kept in mind
that, in this experiment, the strain and turbulence time scales are of the same order of magnitude so that
rapid distortion hynothesis is not valid.

Another example deals with the study of turbulence submitted to a plane shear. In such a flow,
we are mainly interested in the non diagonal REYNOLDS stress <u'v'> due to the shear lU/ay. Here again, the
rapid distortion theory I- ,-nabla to predict thc REY.NOLD$S atleb level but gives a good estimate of the
time evolution of the anisotropy, when compared with experiment, as shown on figure 9.

4 - THE NON LINEAR PROBLEM

4.1. Introduction

| As already mentioned, the equation for the nth order moment exhibits the (n + 1)th order moment

because of the non linear terms. An infinite set of equations can so be derived but the problem cannot be
solved by analytical means ; modelling is required.

For the sake of simplicity, we shall restrict our presentation to isotropic turbulence without
mean velocity gradients. The influence of mean velocity gradients on non linear terms has been recently
studied by CARBON /45/, /50/ and BERTOGLIO /55/.

In this chapter, we shall just try to bring into evidence the various ideas used to tackle the pro-

blem. Readers interested in the closure of the non linear problem may refer to the books of LESLIE /56/ and
LESIEUR /108/, the ltctures of ORSZAG /57/ and the papers of KRAICHNAN and ORSZAG.
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4.2. Isotropic turbulence spectrum

Isotropic turbulence is rotation-invariant turbulence. All statistical properties depend only upon
the modulus of the separation vector, not upon its direction. As concerns the REYNOLDS stresses, the iso-
tropy hypothesis leads to <uu'> q2

ii 3
As concerns the second order moment, the isotropy hypothesis and the continuity cinstraint give

where U(Ili 11) is the energy density on the sphere of radius k. The factor I iq used to have

•i(>- U(Ii i~)

and consequently E(k) - 271k
2 

U(k)

The isotropy hypothesis highly simplifies the problem as the knowledge of second order moments
is reduced to the knowledge of energy spectrum which depends only upon the wave number.

Isotropic turbulence can exist only in the absence of mean velocity gradients. Strain elongates

eddies in one direction, compresses them in another so that the isotropy hypothesis is no longer valid. Simi-
larly, rotation introduces a preferred direction, the rotation axis and isotropy is broken.

Momentum equation, without mean velocity gradient, reduces to

-3-+ v k'u' -- ik L' (k) j)d
3

It is customary, and convenient too, to symmetrize the RHS ; the momentum equation can then be
written as k

-t+ v k u , - f i() _( -a) u1(dp

with
Aiji(k) - k9' AQj(h) + kj Ait(l)

This syimsetrized form has already been used to study the detailed conservation property of the

non linear transfer term.

4.3. Energy spectrum

The energy spectrum can be interpreted as the integral, over spher.s of constant wave number, of
half the trace of the second order moment. The evolution equation for the energy spectrum can be !irectly
derived from the second order moment equation. With the above symmetrized momentum equation, this equation
readsa23.

ra E(k) + 2 vk
2 

E(k) - T(k) .J T(k, p. ) d dA(k)

where T(k) is the transfer at wave number k due to the interactions with all wave vectors which form a tri-
angle. It must be r',ticed that the isotropy assumption implies that the detailed transfer T(k, _' 2) de-
pends only upon the magnitude of the three wave vectors k, p and q, not uoon their direction. The integral
extends upon all wave vectors p and a and over the sphere of radius k, i.e. over all possible directions
for the wave vector k. At last, the detailed transfer can be expressed as :

T(k, k. _) - L Im(Aij(h) ,i•t(- k, a)) (with k - p + q)

where Im stands for imaginary part of the complex variable. It must be kept in mind that this detailed

transfer conserves energy, iz :

T.=, aq) + T(j, h, p) + T(p, 2. k) - 0

If viscosity is turned off, the energy spectrum evolves only under the influence of he transfer
term. The transfer term does not create or delete energy so that the kinetic energy is conserved. If the
energy is initially concentrated in a narrow band, triadic interactions will immediately redistribute this
energy to all wave vectors which can make triadic interactions with an energy containing mode, i.e. triadic
interactions will redistribute this energy over all the space of wave vectors.

We shall now imagine that there exists a maximum value for the wave number, i.e. a minimum value
for the size of the turbulent motion. This kind of situation seems to be difficult to realize experimentally
but is easily treated by numerical or analytical means. The r~le of the transfer is then to share energy
among all possible modes. After a sufficient time, a steady stare is reached in which energy is uniformly
distributed over all modes. The energy density U(k) is then constant and the energy spectrum E(k) = 27vk2 U(k)
b-haves as k'. The density can be found from the knowledge of the kinetic energy :

i q2 okmax E(k) dk-Žk 3 U

2 Jo 3 max
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When the fluid is viscous, which is the real case, the evolution of the energy spectrum results
from the balance between transfer and viscous effects. The rgle of viscosity is to dissip'-te turbnlent ki-
netic energy into heat while the rale of the transfer term is to redistribtte energy among all the modes.
The analysis of the ordexi of magnitude of both termb has shown that, for large et•ough wave numbers, visco-
sity plays the dominant r8le. The order of magnitude of the wave number where viscous effects are important,
can be obtained from the dissipation rate C and the viscosity v. Dimensional analysis shows that this wave

number, known as the KOLMOGORCV wave number, must be kD -~ )/
Let us now suppose that eneri: is injected, at a constant rate C, in an hypothetic isotropic manner,

at a wave number small compared to the ,OLMOGOROV wave number. Energy is distributed among the wave numbers
by the non linear transfer and dissipated by viscosity, mainly at higher wave numbers. After some times, an
equilibrium energy spectrum is fmund ; energy injected at low wave number is dissipated into heat at high
wave numbers. Between the wave numbers where energy is injected and the range of wave numbers where it is
dissipated, there may exist a range of wave numbers where viscosity plays little rgle and where the rgle of
the transfer is to "convey" the energy from lower to higher wave numbers. the spectrum in this region depends
upon the wave number and the energy injection rate. Dimensional analysis shows that the energy spectrum reads

E(k) - o C2/3 k-
51 3

This spectrum law is known as KOLMOGOROV spectrum or inertial range spectrum. This law has been
derived for a stationary sclution, in a region where viscous effects are negligible. The equation for the
energy spectrum then reduces to T(k) - 0, i.e. in this wave number range, the non linear energy transfer
does not input or output energy ; the energy injected at a given wive number by some triadic interactions
is extracted by others. As energy transfers ire mainly efficient between structures of similar sizes, i.e.
close wave numbers, energy cascades down the inertial range from the low wave number raqge in which it is
injected to the range where it is dissipated by viscous effects. The existence of a k-51' inertial range is
difficult to bring into evidence in usual homogeneous turbulence experiments because the turbulent REYNOLDS
number is low and this range, when it exists, is small. However, in geophysical turbulent flows where REYNOLDS
numbers are very large, the inertial range can extend over decades of wave numbers. Experiments performed by
GRANT et al /58/ in a tidal channel have brought clear evidence of the e;:istence of such spectrum. Such
experiments can be used to evaluate the constant K° - 1.4.

The KOLMOGOROV law cannot be valid over all the wave number range, otherwise the integrals

2q E(k) dk

2 - 2v k2E(k) dk

which give the turbulent kinetic energy and its dissipation range both diverge. Viscous effects dissipate
energy and damp the energy spectrum at high wave numbers. It can be noticed that, as fluctuation derivatives
correlation read

- t, 
2
n E(k) dk

the energy spectrum must be steeper than any k-m as k tends towards infinity, so that these correlations
should be finite. The divergence of the energy integral is due to the behaviour of KOLMOGOROV law when the
wave rumber tends towards zero. In the vicinity of zero, the energy spectrum can be expressed in TAYLOR
series as E(k) = Aks + 0(ks+L). The convergence of the energy integra] imposes a > - 1. The study of turbu-
lence decay ixposes 1 i a ý 4 /59/.

The complete figure of the energy spectrum now emerges, with a growing ks spectrum, at low wave
number, a maximum corresponding to energy-containing eddies, an inertial range along which energy cascades
to be dissipated in a viscous range where the spectrum falls rapidly. Experimental measurements, such as
the ones performed by COHTE-BELLOT and CORRSIN /3, 4/ or VAN ATTA and YEH /7, 8/ confirm the image (figure 11).
The energy transfer can alsc be measured. The figure 12 shows the rgle of the energy transfer which removes
energy from the ex.ergy-containing range to the disbipative range. It must be noticed that, in this experiment,
the REYNO'.OS number 

4
s too low, no inertial range exists and the energy transfer is null only for one wave

number.

The existence of an inertial range only at sufficiently high REYNOLDS number can be easily ex-
plained by considering a simplified energy spectium made with two power laws : LogE

k < k E(k) - A k' r,"m a Ae

k > k E(k) - K 
2/

3 k-5/3

which mimics real energy spectra. The turbulent kinetic energy reads
k Ltog k

- 2 2/3 k-5/3 1 s+1 3 2/3 k72/3
-q E(k) dk + K -- A + C

2 o J 1
k
0  af mT0o

1 3 2/3k-2/3
as+ 1 2)jo m

r~o hatf 3s + 5 )3/2 co that km - II 2(s +) oj 1 q1)
3

/
2

;4____1_q2_3/2
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On the other hand, the KOLMOGOROV wave number, which is characteristic of the dissipation ringe
S~re a d s c )l/v-€ • 4

rea d so that the ratio q

kD f3a f 5 r -3/2 ( q -)3 
3 1

k 2(s +1) C)/

where R - (q2)2 is the turbulent REYNOLDS number. For low Reynolds numbers, the energy-containing range
e 9vc

* and the dissipation range overlap and, as the REYNOLDS number increases, these two ranges separate and
leave room for an inertial range in between.

4.4. Simple noa linear models

The first models proposed to estimate the non linear effects tried to model directly the energy
transfer T(k). KOVASZNAY /60/ proposed to express the energy transfer at wave number k directl:r in terms
of the energy spectrum at wave number k. He considered the energy flux at wave nurber k, i.e.

W -f - T(k) dk

and expressed it as :

W - C k5/
2 

E3/2

which is such that the energy flux is constant and equal to E in an inertial range provided that C - K-3/
2

.
K 0

KOVASZNAY mentioned that this coefficient C could be REYNOLDS number dependent. Such a model is clearly
too simple to account for the dynamics of thiadic interactions. For example, the influence of a local dis-
turbance in the energy spectrum /10, 11, 12/ cannot be accounted for.

Let us now consider the case of a spectrum with a scale separation such as the one depicted on
figu:e 13. The small eddies have little energy and small scales when compared with the large eddies. They
can be viewed as a Brownian motion superimposed on the large eddies. Su. % a Brownian motion extracts energy
from the large scales through an effective viscosity. By analogy with the viscous effects, this energy ex-
change reads :

l- T(k) dk" 1k1 2e k
2 

E(k) dk

HEISENBERG /61/ proposed to L.xtend this formula to continuous energy spectra. He assumed the ef-
fective viscosity to be wave number independent and expressed it ir terms of the energy spectrum of the smail
scales. The final model, dictated by dimensional analysis, reads :

1(k) -o k T(k) dk - C 2k2E(k) dk dk
h0 -oh )

with 1 K-3/2
CH 2

Such a model linke the energy transfer at a givan wall: number to the energy spectrum over all the
wave number range. The HEISENBERG model can give fairly qood predictions o" isotropic decaying turbulence.
However, it is unable to give information about the detailed energy trznsfer T(k, p, q) and it is difficult
to extend to anisotropic flows.

Some other simple models have been proposed using similar approaches. Recently, CROCCO /62/ re-
visited KOVASZNAY and HEISENBERG models to improve them by comparison with experimental lata.

4.5. The direct interaction approximation

The best way to introduce the DIA may be to cite ORSZAG /57/ : "The direct interaction approxi-
mation, developed by KnAICHNAN, is the only fully self consi-tent analytical turbulence theory yet disco-
vered. While its predictions do not accord with experiment at very high REYNOLDS numbers, the insights that
it has given into the nature of turbulence are many and important. It is the only theory to account for non
linear scrambling and stochastic relaxation in a fundamental way."

The DIA was proposed by KRAICH1,AN /63, W4/. However, we shalt adopt here the presentation proposed

by LESLIE /56/ and extended by MATHIEU and JEAVIDEL /65/. Let us consider isotropic turbulence submitted to a
stirring force f. The momentum equation reads

+u Vk k2u qc) u -(k t

-i-- 2 v ijX~~k) u( uj(p) d
3
p f,(k' t

The first idea is to introduce '.he infinitesimal unit response tensor G which links the variations
of the velocity field to varintions of the driving force

t(
6 ui(ic. c) G in CL t., t') 6

fn~k' t') dt'
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The equation for this tensor can easily be derived from the NAVIER equation as

G(,t, t') +~k . k k, G ,t - I i t -i~ '

dtin-li in-t i

The problem is now to solve both momentum and response tensor equations. For this, the velocity
field and the response tensor are developed as TAYLOR series :

u - u° + AuI +

C - Go + XG
1 

+

where A is a small paraneter associated to non linear effects. The momentum and response tensor are thus
similarly modified as

dt
(•+c) u - Au +5( -

4- X. (t -t1)

where symbolic notation is used now for the sake of simplicity. The equations for the first two orders read
(A + )uo . fo0

(.t

(d + o. 6(t - t')

(d + a) u1 o o

do
(A + a) 0 GOu,

The first equation gives the velocity field uo only due to the driving force and the viscosity.
The second equation gives the response tensor Go which does not depend upon the flow field realization and

I statistical~y sharp. This response tensor GO can be used to solve the two followiate equations

u - 2G
uI . o o uo
GI . G°Gou°

so that the first two orders are completely determined.

Statistical variables can a.-. be obtained for the first two orders expansi.n. For that, the ve-
locity field u

0 
is assured to have a Gaussian distribution. The third order moment readd

<uuu> <uououo> + A E <uluouo> - 2 I Go <u~u°> <uou0 >
as, for a Gaussian distribution, third order moments are zero and fourth order moments decompose as pro-
ducts of second order moments. Moreover, as GO is statistically sharp :

<Gu> - <Gou°> + A lu°> + X <Gu I> - X G°G° <u'u°>

The final step is to restrict the TAYLOR development to order one, to put A equal to one and to
identify the zeroth order terms uO and G

0 
with the velocity field and the response tensor. The DIA equations

are so obtained ; they read :
( + 0c) <uu> - Z G <uu> <uu>

( + a) <G> - <G> <G> <00> + 6

or, in a more complete form

( + k
2
) U(k, t - t') 2T kpq b(k,p,q) dpdq (, t' - t") U(p, t - tG) U(q, t t") dt"

+t if It-

-2 tGpt-t"JJ, " UJ(k , '-t" t

(+ vk2) G(k, t - t')- 27rf kpqb(k,1 ¾,q) dpdq fG(p, t - t") U(q, t - t") C(k, t., - t)dt"

where b(k, p. q) is a coefficient which depends upon the geometry of the triad.

The last statements in the derivation of the DIA, while standard in theoretical physics, may
seem quite crude. We shall try to justify them later.

The fit., important information given by this model is that the third order moment can be ex-
pressed as

<uuu> - 2 E G<uu> <uu>

i.e. third order moments can be expressed in terms of second order moments and of a response tensor G
which measures the time coherence of the turbulent field. This property will be used later.
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With the above expression for the third order moments, the contribution of each triad to the

energy transfer can be analyzed. If the geometrical coefficient b is assumeo positive, which is true for
the major parts of the triads (ORSZAG /57/), the above energy equation shows that the action of wave numbers
p and q is to inject energy at wave number k while the action of wave numbers k and q is to extract energy
at wave number k. The final picture of triadic interaction is thct two wave vectors give energy to the third
one in such a way that the detailed energy conservation is satisfied.

It must be stressed that the DIA equations are not only dealing with the energy density U(k, t)
at a given time but with the two-time energy density U(k, t - t') obtained from second order moments at two
different times. Therefore they are quite heavy to use as they lead to a large amount of variables.

At last, one of the most interesting features of the DIA equations is that they include no adjus-
table coefficient.

The DIA equations can be justified by considering dynamical systems. NAVIER equations can be ap-
proximated by the following system :

t Yi + VYi - E Aijk YjYk

where the Aijk must satisfy the constraint

continuity Aijj " 0

symmetry Aijk - Aikj

detailed energy conservation Aijk + Ajki + Akil - 0

KRAICHNAN (1966) introducer the Random Coupling Model in which the sign of Aijk is taker, randomly
from triads to triads while satisfying the above constraints. He showed that the DIA equations are exact
solutions of the Random CoupliLg Model as concerns the correlations <YY>. The justification of DIA equa-
tions is discussed at length by LESLIE /56/.

The above presentation has made the name Direct Interaction Approximation a little strange. It
must be kept in mind that the model is obtained from a small parameter expression of the non linear term.
A given wave vector k interacts with wave vectors 2 and _ such as k - 2 + . These wave vectors and .
interact with other wave vectors which form a triangle, these wave vectors interact ... and so on ad infi-
nitum. The truncation of the non linear term expression only accounts for "direct" interactions and neglect
"indirect" influence via multiple triadic interactions.

The main consequence of this direct interaction approximation is that the rgle of the larger ed-
dies is badly represented. The rgle of larger eddies is twofold : on the one hand, they exchange energy via
triadic interactions while, on the other hand, they advect smaller eddies. As this advection r3le is not
well captured by the DIA, the DIA equations are not Galilean invariant. One of the most striking consequen-
ces of this failure is that the DIA equations lead to a k-3/ 2 

inertial range. KRAICHRNAN /67/ proposed to cure
this defect by using a Lagrangian reference frame to automatically account for advection effects. The for-
malism becomes heavier, but the model is able to predict k-5/ 3 

inertial range and to give a value of the
KOLMOGOROV constant of 1.43 veryclose to the experimental value 1.40 measured by GRANT et al /58/.

4.6. The Test-field Model

To keep the advantage of the Eulerian reference frame, KRAICHNAN proposes to analyze the evolution
of a fluid blob in an Eulerian reference frame. A fluid blob is distorted by advection effects but this is
a "false" distortion as it makes no sense in a Lagrangian reference frame. On the contrary, KRAICHNAN con-
siders that pressure effects cause a "real" distortion of fluid blobs.

To restore the Galilean invariance in an Eulerian framework, one has to account for the pressure
effects only and to eliminate the effect of advection. We have previously seen that the rgle of the pressure
is to improve the continuity constraint by suppressing the compressible part of the velocity field, i.e. to
impose to the velocity field to be in the plane normal to the wave vector. The idea is then to use an hypo-
thetic field with a compressible part, i.e. a component parallel to the wave vector, to measure the rgle of
the pressure. This test field is advected by the incompressible field and pressure terms are discarded in
the test field transport equations to obtain a compressible velocity field. This test field is used to ob-
tain the response tensor G. Ihe test field model is simplified by getting rid of all time memory effecta *jy
a Harkovianisation. This procedure highly simplifies the model but introduces a model constant to adjust to
partly restore the turbulence memory.

The test field model was first developed by KRAICRNAN /68/ with the help of a dynamical sys:em
and extended to anisotropic turbulence /69/. Connection with other closures is studied in /70/. Validation
of the test field model by comparison with direct resolution of the NAVIER equations at low REYNOLDS numbers
is shown in /57/ and /77/.

4.7. Gaussian approximations

The fact that velocity f£uctuationa are closa to a Gaussian distribution and the peculiar proper-
ties of moments of Gaussian variables have already been used in the formulation of the DIA. Here we shall
adopt a somewhat heuristic approach to derive a closure.

_

-S
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The NAVIER equation can be written, in symbolic form, as

a- + Vk~u = uuat

So that, due to the non linear term, an infinite hierarchy of moment equations can be obtained

<uu> + 2vk
2 

<uu> <uuu>It

tT <uuu> + V(k + p
2 

+ q) <uuu> <

If the velocity iluctuations were exactly Gaussian (or normal), the third order moments should
be zero and the fourth order moment should decompose as products of second order moments. As third order

moments are responsible for the non linear energy transfer, the energy spectrum would then decrease only

under the influence of viscosity.

HILLIONSHTCHIKOV /83/ and PROUDHAN and REID /71/ proposed the quasi normal hypothesis in which
fourth order moments are still assumed to decompose as product of second order moments but third order mo-

ments are no longer null to allow energy transfer. The equations now become

a <uu> + 2vk
2

<uu> - <uuu>

<uuu> +v (k
2 

+ p
2 
ý q

2
) <uuu> - <uu> <uu>

It

OGURA /72/ performed numerical integration of the above equations and showed that they rapidly

lead to negative values in the energy spectrum, which is unphysical. The reason, as pointed out by ORSZAG
/73/, is that there is no damping in the third order moment equation, so that the thirc order moment can
increase indefinitely witiout reaching an equilibrium state. ORSZAG proposed to add a damping term in the
third order moment equation :

a <uuu> + v(k
2 

+ p
2 

+ q
2
) <uuu> - <uu> <uu> - +n + nq) <uuu>

It <uu u><u n P+ nq

in order to limit the third order moment and hence the energy transfer and to avoid negative regions in the
energy spectrum. The solution of the above equation reads :

ft -(•k + Vp + pq~

<unu> - f t<uu> <uu> e q dt

with p Tk + vk
2

where time 0 corresponds to an initial state when the turbulence is assumed to be Gaussian. To get rid of
the time integral, a Markovianisation process is proposed in which the damping exponential function is
supposed to vary much more rapidly with time than the second order moments so that :

' _(P +ji + j )t I -(Ok + ;jp + jiq )t

<uuu> - <uu><uu> e k q dt k+ <uu+ uq
Jo k +ip +

+ - <uu><uu> for large tVk + Op + 'jq

Another interest of this Markovianisation is that it ensures realisability, i.e. negative energy

spectra can no longer be obtained. After some algebra, the equation for the energy transfer can be obtained
asE(k) 

+ k
2
E(k) - J xy+ Z (kOE(p)E(q) - p

2
E(k)E(q)) dp"rat f~)+• Ek ekpq q

where the integral holds over all triangle interactions k - + _. The geometrical coefficient, while expres-

sed in a different way, is of course the same as in the DIA equations, x, y and z are the cosines of the angles
respectively opposite to the wave vectors k, j and q. The damping
coefficieat 

0
kpq is the one we have already obtained, i.e.

0 kpq - k q for large t. ORSZAG /57/ first proposed " o

an expression for the damping coefficient rk based upon local properties of thekenergy spectrum, i.e.

Ik - k3/2 E 1/2. The final form for the damping term proposed by ANDRE and LESIEUR /70, 74/ is

n(k) -"X( p2E(p)dp)1/2

where X is a constant connected to the KOLMOGOROV constant.

This ,.odel, based on a quasi normal approxi-ation with an additional eddy damping and rinally a

Markovianisation, is called Eddy Damped Quasi Normal Markovian or EDQNM closure.

The above presentation of the EDQNN model leads to a phenomenological model obtained as an improve-
ment of the quasi normal approach based on physical ground. This EDQNM model can also be derived from a dyna-

mical system as proposed by LEITH /76/. A third way to analyse the EDQNM Model is to interpret it as a Harkovian
version of the DIA in which the damping of the third order moments is no longer computed as in the DIA or the
TFM but simply prescribed. Connections between the EDQNM model and the DIA or the TFM have been analysed by

ORSZAG /73/, SULEM et al /70/ or BiERRINGet al /109/.

.5 _ _ __ _ _ _ _
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The EDQNH model is simpler to use than the DIA or TFM model and gives good predictions of the
turbulence decay as shown on figure 14 and in reference /75/.

Finally it must be mentioned that numerical methods to solve these equations have been proposed
by LEITH /76/ and improved by LESIEUR and SCHERTZER /59/ and later CROCCO and ORLANDI /78/.

5 - CONCLUSION

The homogeneous turbulence assumption provides a framework in which the turbulence field can be
studied solely in presence of constant mean velocity gradients.

The study of the NAVIER equation in FOURIER space has brought into evidence the distinction bet-
ween the linear action of viscosity and of the mean velocity gradients or. the turbulent motion and the non
linear action of turbulence upon itself.

The linear problem only involves contribution at a given wave rcztor and can be solved by analy-
tical means.

On the contrary, the non linear problem is open and modelling is requi:ed. Although some simple
models can give good approximations for the energy transfer, analytical theories are needed to construct
models for the detailed energy transfer. The DIA was first proposed but this model needs a Lagrangian treat-
ment to be Galilean invariant. However, it is the only model to give information on time correlations. TEN
and EDQNN are Harkovian models which only give information about one-time moments ; they are therefore easier
to use. The response function is computed in the TFM with the help of the compressible test field and pres-
cribed in the EDQNN ; the EDQNM closure is thus simpler. All these models can be derived from dynamical sys-
tem and are interrelated ; so no empirical constant has to be introduced in the models.

As the linear problem is analytical while the non linear problem needs no constant tuning , the
second order moment equations in FOURIER space can be solved without tuning any constant with respect to
experiment.

Part 2 - APPLICATIONS OF TWO-POINT CLOSURES TO THE DEVELOPMENT OF ONE-POINT CLOSURES

I - INTRODUCTION

In quite all engineering problems, one-point closures are used to reduce the amount of turbulent
unknowns to an acceptable level. The problem is then to evaluate the REYNOLDS stresses. The transport equa-
tion for the REYNOLDS stresses can be derived from the NAVIER equation as :

U +i <I i I +> - 2 <uau ' au
'a<ui'u> + U ..iL <u'u'> =-<uu> ax~ -D auu' N ~ >2<~~~
It ij k a 2.t i i k lak kIk 0 Ix a~ a'.

+ i-. uuu 1 > - <u - uu> + <P,. (uj uj + ui)>)A k( ullu.., axk <ulnai P 'uI k + oi ik )
where the LHS represents the total derivative of the REYNOLDS stress and the RHS the production by action
of the mean velocity gradient, the redistribution by pressure effect, the destruction by viscosity and the
diffusion. Often, only the transport equation for the kinetic energy is retained. This equation is deduced
from the REYNOLDS stress transport equation as :

qt 2 2+ U , q
2 .' p + 2<u uu> - r q2 + k

9t U Z 3" 2 axk 2 uk' axI' k p '--

where P- - <uluuL> is the turbulent kinetic energy production and e - V •--4: > its dissipation rate
i i J J>

by viscous effects. To solve the kinetic energy transport equation, the dissipation rate has to be evaluated.
A transport equation for the dissipation rate can be deduced from the NAVIER equation. It reads :

•+U I . uIU Is Iu•>' Iu Iu' _•i s' Iu'~ I•u' I•u'
, k i i ,iIt 2v Ix2.  '> +2 <-xk A - 2v <---- - _<....>at at x < a- a @rc2 z axk a xXa Ixkax2  axka~

" I 2V <u + y t kl<u x . -u L4L>+3CJ
2v~ x kIý IXk axi 2x

The REYNOLDS stress, kinetic energy and dissipation rate transport equations are the transport
equations commonly used in one-point closure models. All these transport equations are open and terms whichr
include new variables require modelling. In the REYNOLDS stress treinsport equation, only the production term
does not introduce new variables, the pressure strain term, the visco'is dissipation term and the diffusion
term require modelling. In the kinetic energy transport equation, only the diffusion term requires modelling
while in the dissipation rate transport equation, all terms are unknown.

In the framework of homogeneous turbulence, the diff'ision terms disappear due to the translation
invariance of the turbulent flaw. The use of two-point closures for homogeneous turbulence can only provide
information about the pressure strain correlation and the dissipation term in the REYNOLDS stress transport
equation and the first three terms of the RHS of the dissipation equation. Two-point closures require no
turning of empirical constant and can be viewed as "exact" solutions. Of course, as modelling is needed for

directly give information about statistical averages and can be used at any REYNOLDS number.
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2 - APPLICATION OF TWO-POINT CLOSURES TO THE MODELLING OF THE REYNOLDS STRESS TRANSPORT EQUATION

2.1. Introduction

ia The two unkaown terms in the REYNOLDS stress transport equation are the pressure-strain term and
the dissipation term.F Following CHOU's idea /79/, the pressure can also, in physical space, be decomposed to bring into
evidence linear and non linear effects. The POISSON equation is obtained by taking the divergence of the
momentum equation as :

p x ax By;.ax' xi~xi 8i 8t•

and, with the help of the REYNOLDS decomposition, the pressure fluctuation is given by

I a
2
p, . aU ? a U _ u u'1  >uc

P ax iax lx ax l X x az
i -xxi i i •

The pressure fluctuation is then deduced from the GREEN formula, which reads, far from boundaries

p'(x I u U ululu - <ulul>I d~x-

71TrJ axi NZ a axzl ~ j . I~~~
Finally, the pressure strain term can be decomposed as

<P 3? -> ij,1 + o,2
where a' a? ,

1~~ . BAi~f i

is the .ontribution of the non linear effects while :

au lu'au d
3
X'

is the linear par, where the mean velocity gradient has been extracted from the integral under the assumption

of homogeneous flow. As these two terms correspond to different phenomena, they are usually modelled separately

2.2. Return to isotropy

The study of the decay of anisotropic turbulence in the absence of mean velocity gradient provides
a good test case to study the non linear effects. Experiments have shown that the r6le of the non linear
pressure-strain term and of the viscous dissipation ir to reduce the turbulence anisotropy as the turbulence
decays. The REYNOLDS stress transport equation then reduces to, in a reference frame conveyed by the mean
flow

d <Uu>- +dt iu i l,l eI 01, 1 -11i

- ax. au.

As the viscous dissipation is mainly due to the smaller eddies which are supposed to be nearly
isotropic, it is customary to assume C j - 2/3 6 j c. LUMLEY and NEWMAN have proposed to model together the
non linear pressure-strain term and the anisotropic contribution of the dissipation as

d <ujlu> " - 1+iJ 3 i
c j, i, 3 

6
i j' '

where *ij " J +(0 l) -- + " t(<u v)

They have shown that the function ¢J can be reduced to :
i bij +y (b2j - 1 iI)

0ij ii -3 ij

wit B"S(I, 11, •) - y (II, III, Rx)

I -b b III- bijbjb b2  bkbkj
ij ij ijkbki j

(u',,'> 6 i 
1where b I - -L in the anisotropy tensor and R£ --- q 'he turbulent REYNOLDS number.

ir q 3R

The problem is to determine the functions 8 and y. The most popular model is due to ROTTA /81/ who
assumed a linear return to isotropy (B - 1, y- 0). Recently, CHOI /16/ performed a large investigation to
"measure" the 8 and y functions over a wide range of anisotropy and REYNOLDS numbers.
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Direct numerical simulations of turbulence can be u id to easily study different values of the
anisotropy invariants II and III but they are restricted to low REYNOLDS rumbers (e.g. /52/, /82/).
Figure 15 shows the prediction of two simple EDQNN closures developed by BERTOGLIO /84/ and CAMBON /43/
which both compare favourably with experiments.

Two-point closures could be an interesting complement to direct simulations and experiments, in
order to stuay the return to isotropy process in situation that cannot be easily achieved by these two me-
thods as e.g. large REYNOLDS number or to study, at low cost, the influence of one parameter (REYNOLDS number,
total strain imposed before the return to isotropy phase, strain/turbulence time scale ratio, ... ). Such a
study could easily confirm or infirm the LUMLEY and NEWMAN approach over a wide range of situations.

2.3. Linear part of the pressure-strain correlation

Rapid distortion theory holds when the turbulence is submitted to a strong velocity gradient,
when compared with the turbulence time scale. The non linear effects are then negligible and the REYNOLDS
stress evolution is governed by the production term and the linear part or the pressure-strain correlation.

LE PENVEN and GENCE /85/ used rapid distortion theory to model the pressure-strain correlation.
They considered Initially isotropic, strained flow. Using the approach of the linear proelem developed by
CAMBON /43/, they showed that the anisotropy tensor can be expanded in time series as

b (t) DX 2- Dm i 6 )t2 + 0 (ht 3I)
where D. is the deformation tensor g -l +UM- ) and that the pressure-strain correlation can also be

m 2~ ax ax jexpanded as m

-2 2

"~ij,2 + 111,2 )(t) -2D 6. q
2  

_L 0 iimm6 i~m

+ 1 ( + - 12 (Dm6j + Dml6 + D 66 + D 6

+ 1 (9 8 6ij6
Zm - 17

(
6
ijm + 

6
im

6
jt)) Dilt

2

+ T (- 76 Diji m + 50(DimDjz + DitDjm) -52(Dij6tm + ,ZmMij)

+ 14 (D2 6 + D2&M6 +0D2 6j + 02M6 )) t2 + (1D!13

with Dm - DtkDkm ; DV - DkkDk.

The time can then be eliminated between the two expressions to obtain the proposed expression
for the pressure-strain correlation

oij,2 + 51,2 - 2Dt q~ 6.~ (6~jm + 6im 6 ,3 6 4 
j 66. ) - (bijit m I bi 6ij)

+7(im i bi~it ~ + ~784 "(
6
i2.

6
jm i.j

95 125 2- 8ebijbpz + '2(bi9.bj + b, b Z) -
2
1-5(blj 6t + b,26,)56..j2 196 ij1 ai

+ 6 (b2 + 6 +
392 it .jm i im m i m

All coefficiants in the model are constants as the time series have been truncated to second order.
If the time series %.ere truncated to higher orders, these coefficients will be functions of the anisotropy
invariants II and Ill (GENCE, private cozmunication).

REYNOLDS /110/ also used rapid distortion solutions for initially isotropic turbulence submitted
to strain to improve the pressure-strain term model. Instead of looking directly at the pressure-strain term,
"he studied the fourth order tensor ala which appears naturally as'J

mi a .
Sij,2 - 8Xj ax-

"and can easily be expressed in terms of second order moments. Properties of this tensor and realisability
constraints are advocated to reduce the number of independent coefficients. He first studied the standard
model (REYNOLDS /87/, LAUNDER et al /107/) in which this fourth order tensor is expressed as a linear func-
tion of the anisotropy tensor b and computed the only adjustable constant to be consistent with rapid dis-
tortion theory. As the so obtained model violates realisability constraints for two-dimensional turbulence,
he extended the model for the foirth order tensor to include quadratic terms and obtained the same model as
LE PENVEN and GENCE.
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ue iLECOINTE et al /86/ used CAMBON's analytical solutions to extend the above procedure to tempera-I I ture variance and also sheared flows.

At last, LEE et al /49/ solved the linear problem for initially Isotropic strained flow in an
original way and deduced time series which can be used to calibrate pressure-strain correlation models.

It must be kept in mind that rapid distortion is valid only !or large strains but for very short
times compared to turbulence time scales. As time increases, non linear effects become important and the
expressions for both the anisotropy tensor and the pressure-strain correlation diverge from the --pid dis-
tortion solution. However rapid distortion theory can provide analytical solutions which must be satisfied
by the pressure-strain correlation model for short time. This approach, restricted for now to isotropic
turbulence, could be extended to any initial condition.

3 - DISSIPATION EQUATION : PURE DECAY

The r8le of the various terms on the RHS of the dissipation equation is difficult to analyse.
We will prefer to try to model them together in various situations. The first use of spectral space to model
the dissipation equation is due to COMTE-BELLOT and CORRSIN /2/, in the case of purely decaying turbulence.
The argument has been extended later by REYNOLDS /87/.

The basic idea is to use a simple shape to mimic the real shape of the energy spectrum. The
energy spectrum is defined by two simple power laws Log E

ký k E(k) -Aks A0'

k Log k

km d

I q
2 

- E(k) dk - Aksdk + /3 d%:
3( s +_1) 2 2(s + 1)

3s + 5 K3s + 5 A3s + 5 3s + 5
2(s + 1) o A

During the decay, experiments have shown that the energy spectrum evolves in a self similar way
(e.g. cf /88/, vol. II, p. 204), i.e. the energy spectrum decays with a given shape E(k.L) in the large
scales, L being a characteristic length scale of the large eddies and a shape E(k/kD) in the small scales,
both laws overlapping over the inertial range. The coefficients A and a are therefore time independent.

Moreover, the turbulent kinetic energy reduces to

I q2

Assuming that the flux c cascading along the inertial range and the dissipation rate C are equal,
which is a standard one-scale assumption, the two above equations can be combined to obtain the dissipation
transport equation :

de 3s + 5

dt Q2 1 q2 2 2(s + 1)

The above equation has already been proposed on dimensional analysis grounds and the coefficient
C calibrated by reference to experiment. The main interest of the above argument is to validate simply
tfis form at high REYNOLDS number and to show that there is no universal value for the coefficient C as£2
the exponent s lies between I and 4. LESIEUR and SCHERTZER /59/ have shown however that tricky non linear
effects invalidate the argument when s is equal to 4.

4 - DISSIPATION EQUATION : SOLID BODY ROTATION

4.1. Introduction

Experiments (/18/, /22/) or numerical simulations (/89/, /90/) have shown that the rSle of rota-
tion is to reduce energy transfer and hence the decay rate of turbulent and to lead to axisymmetric turbu-
lence, the departure from isotropy being small in all experiments.

This double r8le of rotation can be simply explained by looking at the momentum equation in
FOURIER space. It reads, in symbolic form

d u + VOL = uu + W^U
d
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It must be kept in mind that the r le of the pressure term is to satisfy continuity i.e. to project the
velocity field on the plane normal to the wave vector. The rotation action is thus partially Inhibited by
the pressure ; for wave vectors parallel to the rotation axis, there are no rreqsure effects while for wave
vectors normal to the rotation axis, the CORIOLIS term is completely compensated by the pressure action.
All wave vectors do not rotate at the same rate and thus, the energy exchange between wave vectors which
form a triad is decreased as the coherence between these modes is damaged. The energy transfer is then
reduced. Moreover, the pressure effects introduce a preferred direction ; the rotation axis and the turbu-
lence tends to evolve towards an axisymmetric state, the symmetry axis of which is the rotation axis.

4.2. CAM4ON's EDQNM models

CAMBON (/45/, /91/, /92/) has developed a complete model, in the framework of the EDQNN closures.Swhich accounts for the rgle of rotation on third order moments and is able to predict the selected reduction
of energy transfer and anisotropisation of the turbulent structures according to the relative angle between
the wave vertor and the rotation axis. This model is however intricate and time consuming.

A simpler model has been proposed by CAMBON /93/ on more heuristic grounds. The idea is that the
damping time in the EDQNM model :

n(k)- [Jp2E(p)dp)1/2

as proposed by ANDRE and LESIEUR can be interpreted as twice the square of the rotation imposed at wave
number k by all the larger eddies. CAMBON's idea is to add the contribution of wave number zero, i.e. the
solid body rotation as :

n(k) - k p2E(p)dp + 2 W2 1/2

This modification increases the damping of the third order moments and, as third order moments
are responsible for energy transfer, reduces the energy transfer and then the rate of decay of turbulence.
However such a model is isotropic and does not account for the anisotropisation of turbulence submitted to
solid body rotation. This model is thus only valid to compute energy spectra of fairly isotropic turbulence.
This limitation is not drastic as experiments and numerical simulations have shown that anisotropy develops
very slowly.

4.3. Validation of the EDQNM model

The simplified EDQNM model has been validated by compariscn with results of the complete EDQNM
model (CAMBON, private communication), by comparison with the experiments of WIGELAND and NAGIB /93/ ind
by comparisons with numerical simulations /90/.

Direct simulations, i.e. resolutions of the NAVIER equations, were first performed at very low
REYNOLDS number (RA - 35 ; Re - 80) with an initial spectrum similar to the one used by ORSZAG and PATTERSON
/77/, i.e. of the form k

4 
exp(- k

2
). Energy spectra after seven eddy turnover times obtained with the direct

simulation and the EDQNM closures compared favourably whatever the rotation rates (figure 16a).

Direct simulations could nut be performed at higher REYNOLDS numbers, so large eddy simulations,
in which only the largest eddies are computed while the smaller eddies are modelled, were used. Two subgrid
scale models were used to represent the effect of the smaller eddies, both models being derived from the
modified EDQNM model. The first model, labelled SGS 1, represents the smaller eddies with the help of a
wave number independent eddy viscosity which depends upon the small scales turbulent kinetic energy, the
rotation rate, the REYNOLDS number and an assamed shape for the energy spectrum of the small scales /94/,
/95/, /96/. The second model, labelled SGS 2, is more elaborate and couples the evolution of the large scales
with an EDQNM computation of rhe energy spectrum of the small scales /96/. Both models were used to simulate
a fictitious ex,'riment where the initial energy spectrum of the COMTE-BELLOT and CORRSIN's experiment
(R X - 75 ; Re - ;5) is submitted to solid body rotation over the experimental time, i.e. thirteen eddy
turnover time. La.je eddy simulations with both subgrid scale models compare favourably with EDQNM compu-
tation at all rotation rates (figure 16b,/96/).

4.4. Exploitation of the EDQNM model

Direct and large eddy simulations have been very useful to validate the modified EDQNM model.
However these methods are restricted to low REYNOLDS number and are much more expensive to use than an
isotropic EDQNM model. The idea is then to use the EDQNM model to study the effect of rotationupon turbulence
over a wide range of REYNOLDS nu-bers, rotation rates, energy spectrum shapes (mainly the a exponent of
the large eddies). EDQNM computations give the time evolution of the turbulent kinetic energy and of the
dissipation rate which are the variableb used in one-point closures.

The problem is to reduce the data obtained from EDQNM simulations to extract a new decay law for
the dissipation rate as the turbulent kinetic energy is the same for nure decay and for solid body rota-
tion, i.e. : I

d lq2
T 11q1

The dissipation rate decay can be reduced to a dimensionless form as which is constant

(Cc.2) in the pure decay case. The evolution of this quantity has shown to vary during decay in presence of
solid body rotation ; the rotation rate is thus not a good parameter. A plausible parameter is the ratio of
the rotation time scale and the turbulence time scale w* w 1/2 q which is the inverse of a ROSSBY number.

C
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2 qT dc:
The evolution of the decay constant F-- .s function of this parameter w• is t6e same, for a given

large eddies exponent s, for various REYNOLDS numbers and rotation rates. At last, the results obtained
for various large eddies exponent s can be reduced to a single law as

q22"• dc +d • c(a) + c*(w*)
7T Ft CC2s C~(*

The function C* is plotted on figure 17. The points indicate the extreme values obtained in the
c

EDQNM simulations when the equilibrium regime has been reached. Two curves, labelled B and RIL, indicate
previous models respectively proposed by BARDINA et al /89/ fron large eddy simulations and WIGELAND and
NAGIB experiments and HANJALIC and LAUNDER /97/ to improve jet flows predictions. These models can be
expressed as :

BARDINA et al C* - 0.15
C

HANJALIC and LAUNDER CA - 0.27 W*2

4.5. Realisability constraints

Before proposing a now law to represent the data obtained from EDQNH simulations, let us examine
the realisability constraints this model must satisfy. Both turbulent kinetic energy and dissipation rate
are positive variables and must not become negative. Without rotation, the equations

d I q

d Cl

dt £ 2 1 i 2 l

prevent both the turbulent kinetic energy and the dissipation rate to become negative if they tend towards
zero.

In the presence of rotation, when the turbulent kinetic energy tends towards zero, the inverse
ROSSBY number w* tends towards zero so that rotation effects are negligible. As it seems natural that C*(0)- 0,

the problem is then the same as in the no rotation case and realisability is ensursd.

When the dissipation rate tends towards zero, the inverse ROSSBY number tends towards infinity.
The function CA can then be reduced to its higher order, i.e. CA w *n so that the dissipation equation
becomes : I [ n 2

F~t Q (• + C) I q2" - CC2 I q 2 e'-=- q2

q iq 2

which tends towards zero when n <2. This constraint is not satisfied by the HANJALIC and LAUN"ER's model.

We have already supposed C*(0) - 0 as it is natural. This relation can of course be easily deducedC
from the EDQNH model. Moreover, It can be shown, with the EDQNH model that

-(w = 0) - 0

The EDQNH simulation results on figure 17 have been approximated by the following law

- 0.2236 w*
2 

+ 0.0303 w*

c 0.2540 wA* + 0.1567 w* + I

This law satisfies the realisability constraint but not the property j.-- (w* - 0) - 0. However,

when the inverse ROSSBY number w* is small, the decay is ruled by the C2 coefficient so that it is insensitive

to the exact form of the CA law in the vicinity of zero.

4.5. Application to solid body rotation experiments

The experiments of WIGEL.ND and NAGIB /22/ have been used to compare the various models as they
are the most documented and fulfil the homogeneity conditions. Computations have been performed for various

zrids, upstream velocities and rotation rates /90/. Figures 18 and 19 give examples for the lowest upstream
velocity and the highest rotation rates, i.e, when the flow field undergoes the maximum rotation in the test
section. For each grid and each velocity, the C2 coefficient has been tuned for the no rotation case and,

as all homogeneous flow computation is an initial value problem, special care was taken in the determination
of the initial dissipation rates. The curve labelled 0 corresponds to the case without rotation, the curves
A, B and HL to ours, BARDINA et al and HANJALIC and LAUNDER models. These ligures bring into evidence the
reduction of the dissipation rate due to the blockage of the energy cascade by the rotation. As the inverse
ROSSBY number •.$ remains moderate 6oA < 7), both BARDINA et al and our model give good predictions in every
case. HANJALIC and LAUNDER model leads to negative dissipation rates and increasing turbulent kinetic energy,

which is unphysical and is due to the violation of the realisability constraint.

I-'
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4.6. Extension to flows with energy production

Homogeneous turbulence is restricted to a certain class of mean velocity gradients. Rotation can
only be combined with a plane strain, the axis of rotation being normal to the plane of the strain. When ro-
tation and strain rates are equal, shear is obtained. Shear is an important case as it occurs in most of
practical flows such as boundary layers, wakes, ...

as /98/ : For flows with energy production, the dissipatioa rate transport equation is usually modelled

Le + UC -. C : - 2 + diffusion termr
SIq 2 CC2 q2

modfie c unwhere PI - <uu in the turbulent kinetic energy production. The coefficient C has been previously

modified to account for rotation effects. Is it necessary to modify also the coefficient C.1 ?

A comparison of the different possible solutions showed that the solution was to add the same
C* term to both C and C (AUPOIX, Ph. D. dissertation). A first argument was proposed by AUPOIX et al

/90/, but the best argument to add C*(Io*) to both coefficients will be given later with the MIS approach.

Shear flow experiments have been computed by solving the REYNOLDS stress transport equations with
the LRR model /107/ with different dissipation equations (figures 20 to 22). The curve labelled 0 is obtained
with the standard equation while the curves labelled A and B correspond to the addition to both CcI and C2

of the C* functions respectively proposed by AUPOIX et al and BARDINA et al. The use of this modificationc
improves the prediction of both weakly and strongly sheared turbulence. With respect to the standard model,
the turbulent kinetic energy is increased for weakly sheaied flows and decreased for strongly sheared flows.
The differences between AUPOIX and BARDINA models can only be observed for strongly sheared flows where
relatively large inverse ROSSBY numbers w* are encountered. Our model seems to give better predictions but
the difference remains small.

4.7. Conclusion

This study of rotation effects shows how two-point closures can be used to improve the dissipation
equation. A complete EDQNM model could be used but it was too time-consuming (and still in development at
that time). A simpler EDQNM closure has been preferred. Direct simulations of turbulence were first used to
validate the EDQNM model at low REYNOLDS numbers. Suzbgrid scale models were then derived from the EDQNM mo-
del and large eddy simulations ,vere used to validate the EDQ1M model at higher REYNOLDS numbers. The EDQNM
model was then used to perform, at low cost, a large amount of simulations and derive the new dissipation
rate equation, the form of which cannot be obtained by simple a priori modelling.

It must be emphasized that no empirical tuning of coefficient with respect to experiments has
been done in this study. The C*(w*) was directly obtained and afterwards checked in computations of rota-
ting and sheared turbulence.

5 - THE MIS APPROACH

5.1. The spectrum shape family

MIS are the initials, in French, for Integral Spectral Method. It is an integral method similar
to the familiar boundary layer integral methods where a shape family is assumed, not for the velocity profile
here but for the energy spectrum.

The basic idea is to try to generalize the argument introduced by COMTE-BELLOT and CORRSIN /2/
and REYNOLDS /87/ for self similar decay of isotropic turbulence. They mimicked the energy spectrum shape
by two simple power laws : 02E

1:Sk m E(k) - Ak'mI

k~kkm k) - K oc2/3 k-513

and the turbulent kinetic znergy then reads : k t
Iq2 - 3 ~) k 2s3+)5 o 3s + 5 A3s +"-'- 5 3s + 5I8 JE(k) dk - 3sj

This family of spectrum shape is too rough and does not describe finely the spectrum shape in the
energy containing range. More elaborate transitions between the two power laws could be used but, as far
as the spectrum shape in the energy containing range is just a fixed fot :, it will only change the factor

3(s + 'ti38 + 5 Ko3s + 5
3( ~ K) to another constant. Our proposal Is to introduce an unknown but variable spectrum

2(s +1) 0

shaps in the energy containing range Pnd to express the turbulent kinetic energy as

2 Us + 1)
I FA

3
S + 5  

3s + 5

where P is unknown, time-dependent and reflects the shape of the energy spectrum in the energy containing range.

7[
______________________ '
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j 5.2. Basic assamptions

As in the COMTE-BELLOT and CORRSIN /2/ or REYNOLDS /87/ argument, extra hypotheses are needed
to de 'ibP the spectrum shape evolution.

The one-scale hypothesis still holds. The energy flux c which cascades down the inertial range
is supposed to be equal to the turbulent kinetic energy dissipation rate.

The second assumption concerns the evolution of the large scales. The non linear time scale
(kaE(k))-1/2 and the viscous time scale (vk2)-I are very la'ge for small wave numbers. Thus non linear and
viscous effects are negligible and the evolution of the large eddies is ruled only by an inviscid rapid
distoction theory.

It must be noticed that this argument is strictly valid only for wave numbers close to zero.
The existence of a power law E - Aks at higher wave numbers must be due to both linear and non linear
effects. As the spectrum shape E - Ake has been prescribed over the large eddies, it is easier to study
its evolution for very small wave numbers where only linear terms are important than at higher wave numbers.

The first consequence of the use of rapid distortion theory to study the evolution of the large
eddies is that the exponent a remains constant.

5.3. Dissipation rate transport equation

The transport equation for the turbulence kinetic energy reads, for homogeneous turbulence

1 
-d I q c

where P - - <uIu?> is the turbulent kinetic energy production. This equation is exact and no modelling
I 3x

is required, provided that the REYNOLDS stresses and the dissipation rate be known.

On the other hand, the turbulent kinetic energy reads, with the above hypothesis
2 2(s +1)

I q2 - F A
3
s + 5 C 3s + 5

The dissipation equation can then be derived from these two equations as

edt s+I Adt + 2 112 Fdt

with 3 3s+5

CC2 2(s + 1)
12

This form brings into evidence new time scales. While the standard equation introduces -

1q2 P

and I which can only be interpreted respectively as the mean strain and the turbulence timu bcale,C!
this model direct-y connects the dissipation rate evolution time scale to the evolution time scales of the
large eddies, of the energy containing range shape and ot the turbulent kinetic energy. The degrees of free-
dom initially introduced in the definition of the spectrum shape family reappear ; modelling is required to
determine these new time scales. Comparison with simple flows will be used !or that.

5.4. Pure decay

This first simple flow was the only case considered originally by COMTE-BELLOT and CORRSIN /2/
and REYNOLDS /87/. 1he rapid distortion theory shows that, in the absence of mean velocity gradient, the
large eddies energy spectrum remains invariant, i.e. dA/dt - 0. Moreover, the hypothesis of self similar
decay previously advocated means that the shape of the energy spectrum in the energy containing range re-
mains constant, i.e. dF/dt - 0. The dissipation rate equation then reduces to the classic form

I dc C

7 dt i£21 2

as there is no energy production.

5.5. Solid body rotation

In the case of turbulence submitted to a solid body rotation, the rapid distortion theory still
shows that the energy spectrum of the large eddies remains constant, i.e. dA/dt - 0. The dissipation rate
equation than reduces to

1 de C ....C A 1 d
c dt C2 1 q2 F dtJ

.2 the e +dt i
S as the energy production is still null.2q



S~3-28

On the other hand, we have already modelled the dissipation equation as

S l• d c , - ( c c2 + c •(5 * ) )* * -- =* ½ q 2

c€ dt c2+c*W)1q
TC

so that the two formulae can be identified to prescribe the evolution law for the energy containing range
spectrum shape factor P as

dF C* (W*) C
C2 F dl' - ISdt

This relation is valid only in the case of solid body rotation, i.e. without energy production.
In the presence of production, two different time scales need to be considered

I2
7-- is the characteristic time scale of the turbulent flow ; it can be interpreted as a

time scale of non linear effects in the energy containing range. As the action of rotation is to reduce
energy transfer, it seems natural to keep this time scale in the definition of the inverse ROSSBY number

I q2
c 12q

* n- is the evolution time scale of the turbulent kiieLti energy. As the evolution of theP- C

spectrum shape in the energy containing range is a balance between energy production and energy transfer,
it seems natural to relate the spectrum shape time scale to the time scale.

The proposed law for the spectrum shape factor evolutiou then reads

1 dF T P-C
F7dt CC q2

£2
so that the dissipation rate transport equation becomes

I + .• . 1 XdA + (C 2(s) +C*( w*)) P -L
tdt s +1IA dt £ q

with3s+ 52

c2 2(s + 1) C
5.6. Linear model

The study of the solid body rotation and the analysis of the various time scales has enabled us
to link the variation of the spectrum shape in the energy containing range to the trapping of energy due to
the reduction of energy transfer by rotation.

The only problem is now to express the variation of the large eddies with the help of rapid dis-
tortion theory. The use of a complete rapid distortion calculation would be too cumbersome and time-consuming
so that an approximate, simple linear model is needed.

A solution is the use of the tensorial volumes of turbulence introduced by LIN and WOLFSHTEIN
/100/. These volumes are defined as space integrals of two-point correlations as

i Vi f <u' (x ) ;( I + 1:)> O

qv j(x) - _ _

They can be related to second order moments as :

IM) <uj'() uj(X + 1)> e-Ikr dOr
thus 

(k) - j ( (k) dA(k))
thus 

2 Vij(a) - uf k

X-0

These volumes of turbulence make sensa only when all the second order moments behave like k
2

in the vicinity of zero. The spherically averagcd second order moments can thus be identified with t%. cen-
sorial volumes of turbulence as

( •j (k) =JPij(h) dA(k) - Auj k
2

Au 4nTq2 -u -Ai j - N Vi i 2 A 1 - A

LIN and WOLFSHTEIN derived from the NAVIER equation a transport equation for the tensorial vo-
lumes of turbulence which reads, for homogeneous turbulence

AdA "

dt ik ax k Ajk axk
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CAMBON (private communication) noticed that the cerivationof the above equation is somewhat
spurious as pressure-velocity correlations are assumed to vanish when the separation tends towards infinity
while one is dealing with the properties of turbulence nea, wave number zero. i.?. for infinite wave length.

We prefer to consider this model as a very simple model with pressure effects omitted. Such a
simple model has to be validated by comparison with exact rapid distortion theory solutions.

Figure 23 shows the predictions of the large eddies evolution time scale -s-- i for various
s + 1 A dt

values of the exponent a, for isotropic turbulence submitted to a plane strain. The LIN and UOLFSNTEIN
model gives the same prediction as the complete rapid distortion theory, when the exponent a is equal to
two, i.e. when tensorial volumes make sense. However, as pressure terms are omitted, tie evolution of all
A, coefficients is not absolutely correct. The reasons for the correct prediction of A and the uncorrect
pr~dictions of Aij have been studied by CAMBON et al /45/. It must be noticed that the exponent s in-

fluences the asymptotic value of the large eddies time scale for high total strain ; however, these values
are never achieved in experiments (TOWNSEND /14/, Dtmax - 1,73 ; MARECHAL /25/, Dtmax -2.6). The same
conclusirns can be drawn for three-dimenstonal strains.

Figure 24 shows the predictionn of the large eddies evolution time scale for various values of
the exponent a for isotropic turbulence submitted to shear. The influence of the exponent a is small but
the LIN and WOLFSHTEIN model does not exactly fit with the exact solution. The agreement is however accep-
table. The ' :ference of asymptotic behaviour between the strained a-.d sheared flows must be noticeO

Whiie for strained flows, the time scale 1. LdA tends towards an asymptotic value, it tends towardssa + I A dt
zero for large total strains S.t.

The linear model without pressure effects is not correct for sheared flows as the linear pres-
sure effects are mainly due to mean flow rotation. For turbulence submitted to strain plus rotation with
a rotation rate larger than the strain rate, the linear pressure effects are large and the simple linear
model fails (CAMBON, private communication).

Better linear models, takirg into account pressure effects to give the correct evolution of the
Aij for strained Llows, a better prediction for sheared flows and strain plus rotation flows, and even
valid for various values of the exponent a, have been looked for unsuccessfully (A1JPOIX, Ph. D. disser-
tation). The LIN and WOLFSHTEIN model will be used as it is simple and gives fairly good predictions of
the large eddies time scale.

A special attention has to be paid to the initial values of the large eddies coefficients Aui
as they reflect the past history of turbulence. Figures 23 and 24 show that the large eddies time scale
depends drastically upon the total strain of shear encountered.

For strained flow experiments, it always exists a decay re, ,on between the turbulence genera-
ting grid and the distorting duct. At the entrance of the distorting duct, the REYNOLDS stress anisotropy
is small. One can imagine that the same anisotropy could be produced by applying a large strain to iso-
tropic turbulence during a very short time. Rapid distortion theory connects the anisotropy to the applied
strain as :

b ij . -:- L aL t+ t2
ij q 3 is Ix ,x

fn the other hand, the LIN and WOLFSHTEIN model gives the evolution of the coefficients Auj

for initially isotropic strained flows as : -•
2 + t

A A e ( tN

tj 3 o

so that, by eliminating a + Z 3t, the coefficients AIj can be connected to the auisotropy. The
b IdA

initial coefficient A plays no r~le as one is only interested in the time scale I .

For sheared flows, experimental values are taken downstream of the shear generator. The solution
of the LIN and WOLFSHTEIN model for initially isotropic, sheared turbulence, reads

= A (I + (St) 2
)

A I - A ] A S t S -! • x2

A2 2 " A3 3  Ao

The initial values of the A are thus set according to the travel time o, the flow from the
shear generator to the first station. j

5.7. Low REYNOLDS number effects

The above proposed energy spectrum shape is only valid at high REYNOLDS nuabers. At low REYNOLDS
numbers, the k-5/ 3 

inertial range is reduced or even does not exist. The presence of the dissipation range
must then be accounted for. Various laws have been proposed to represent the energy spectrum in the dissi-

pation range. The most popular are the one prcposed by PAO /101/

ii ma II
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r,2/3 -5/3 3K0 2 K 413 p C )1/4
E(k)-K t k 2x ------ I 7

* and SAFFMAN /102/
2/3 -S/3

E(k) - K c kt exp 2[ 2

EDQNM computations lead to the more complex formula /103/

E(k) ý K.23 c exp(- 3.5 n2(l - exp (61j+ 1.2 - (196 . 33.6n+ 1.4532)1/2))) f-

which has the advantage to exhibit a bump at the beginning of the dissipatl,,e range as observed experimen-
tally /104/.

These above laws could be introduced in the computation of the turbulent kinetic energy to derive
a new dissipation equation. A simpler solution is :o define a truncation wave number o k. such as

-5 • /3 k-13 (OkD °2/3 -,2
/3 

k5 f( k) dk - K . k-
5
/3 dk

and to proceed with inertial ranges truncated at a kD. The constant t is close to unity whatever the dis-
sipative spectrum used. The dissipation equation can then be derived in a way similar to the high REYNOLDS
number case. It reads :

c dt s +1 vr A dt C2 112Fd
e e 2

2
e

where R - (42)2 is the turbulent REYNOLDS number and B a ionstant related to a. For the differente 9vc
spectrum shapes, the following values have been obtained

PAO 6 - 2.065

SAFFMAN B - 2.047

EDQNM 6 - 2.079

An average value 6 - 2.06 has been used.

As the REYNOLDS aumber decreases, the inertial range diminishes, disappears and then the energy
containing range shape variations should be modified at low REYNOLDS number but no tool is available to
simply predict the influence of low REYNOLDS numbers on this time scale (I/F)(dF/dt). Assuming that this
time scale is unaffected by low REYNOLDS number effects, the decay law can be expressed as

I q2 C
7c2 B c2  2 + 12)

1 + (2 -C,2) '(s

4 This decay law has been compared with predictions of EDQNM simulations. As shown on figure 25,the agreement jq pretty good. This simply deduced model is better than any low REYNOLDS number model com-

piled by PATEL et al /105/.

5.8. Comparison with experiments

The MiS approach has been checked by comparison with experiments for various strained and sheared

flows, as shown on figures 26 to 31. The continuous line correspornds to the standard dissipation equation
improved by adding the rotation correction presented above. The dotted line corresponds to the simple MISi sodel without rotation and low REYNOLDS number effects. The largely dotted line corresponds to the MIS
model with rotation effects (i.e. F variations) included and the ciain-dotted line to the M!S model with
both rotation and low REYNOLDS number effects included.

The only tunable parameter in the MIS model is the exponent a which has been set equal to two

to be consistent with the LIN and WOLFSHTEIN model.

For strained flows, the agreement with the HI3 model is as good as with the standard dissipationequation, the coefficients of which have been tuned for this kind of flow (figures 26-27). No rotation ef-

fect occurs and low REYNOLDS number effects are weak.

For weakly sheared flows (figures 2,-29), the MIS prediction are as good even a little betteri ~ as with the improved standard model. Rotation effects and low REYNOLDS r, ober effects improve the prediction

of CHAMPAGNE flow.

The most striking improvement is obtained for highly sheared flows (figures 30-31). Low REYNOLDSnumber effects are small but the agreement with the bare MIS model is as good as with the improved standard

equation. This brings into evidence the important rgle of the large eddies time scale in the MIS equation
this term is large for strained or weakly sheared turbulence and tends towards zero for highly sheared tur-bulence. For highly sheared flows, the MIS equation is equivalent to the standard dissipation equation pro-

vided that the coefficient C tends towards C,2, which is not the case in the standard equation. Moreover,

the rotation effects correction highly improves the prediction.

i ![
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5.9. Conclusion

The MIR approach, based upon simple physical arguments concerning the energy spectrum evolution
introduces now time scales in the dissipation equation. Low REYNOLDS .aumber effects can be naturally ac-
counted for by reasoning on the spectrum shape.

Although a3 too simple linear model has been used. the introduction of the large eddieg time
scale and of rotation effects highly improves the prediction of highly sheared flows.

Moreover, without any tuned coefficient, the prediction of strained and weakly sheared flow is
aa good as with standard, cured, dissipation equation.

6 - CONCLUSIONS

Two-point closures are a vacy convenient tool to solve purely linear pioblem as the problem
is analytical in FOURIER apace. Rapid distortion theory can thus give constraints to improve pressure-
strain correlation models.

Two-polar closures are a suitable tool to perform high REYNOLDS number simulations. As no ad-
justable coefficient is introduced in the model, they can be viewed as "~exact"~. The return to isotropy pro-
blem can be studied over a wide range of REYNOLDS numbers and initial conditions with a two-point closure
in order to improve one-point closures.

The study of the influence of rotation on the dissipation equation has brought into evidence
the r~le of simulations in the derivation of closures. The modified EDQNM model can be obtained as a sim-
p!ification of the exact, anisotropic model but was first validated by comparison with direct and large
eddy simulations. The extensive use of tlhis model has led to a correction function CC* which cannot be ob-
tained by a priori modelling and constant tuning.

At last, the use of simplified energy spectra, either in the simple decay study or in the MIS
approach, have shown to be a powerful tool to study the dissipation equation. This is due to the fact that,
with the one-scale hypothesis of standard one-point closures, the dissipation equation is equivalent to a
turbulent length scale equation while, on the other hand, the use of these simplified spectra gives infor-
mation about the contribution of each length scale to the turbulent kinetic energy. The main advantage of
the MIS approach is to introduce new time scales which were not used in standard models and improve the
prediction.

The author would like to acknowledge Dr. COUSTEIX for his critical review of the paper.

APPENDIX A

CRAYA'S REFERENCE FRAME

The description of second order moments can be simplified by the use of a suitable reference
frame linked to the wave vector to take advantage of the continuity equation. CRAYA /I/ has proposed to

build such a reference frame as follows :

- The FOURIER space reference frame consists of the three basis wave vectors kP1 h2 and h3.

- For a given wave vector k, the local CRAYA's reference frame k'l L2, k 3 is such that k' 3

is paro.lel to k, k' 1 is tangent to the circle drawn on the plane containing h3' and k' 2 such as k'I, k'-2'

l3 be direct.

k;

A; from /

'k2
1P

kkIn this reference trame, the ;econd order moment reduces to 01', NI, 1 ,€1"S, 2 N2.

ý12 ýl S10'
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The relations between components in the initial reference frame and in the CRAYA's reference
frame are obtained with the knowled:e of the maxtrix L:

S / cs osr cues sino -sine0

in- COS o 0
, sin 0 cos (f si, 0 sin• coco

where the angles 0 and can be expressed from the components all a2 and a3 of a unit vector parallel to
ON (i.e. parallel to k or k' 3 ) in the initial reference frame

010a3 02 03

. 21 .2 3
3 3

-012 0

0 2 03 J

The connection between components in the CRAYA's reference frame, denoted by a prime, and in the
initial reference frame, are then :

x•- c a i•xx
Xi . gtX4 ,Wz

aj 'wtI X :a 'a .

Consequently
17 - = (a 2a2 N, +N a N - 'l c t3 (S + S*))

1 1 " 1 - a 2 N 1 a2 2 010203 (S + S>))

22 - 0- 2 3 1 1 2 + 0102 3(S+s

- (1 -20•) N1

I12 " 2 -23 112 N2 +01O3 S -0203 S)

023 " - 0203 N1 - otiS*

P31 ' - 0103 N1 +o 2 S

and the trace,'i.e. the contribution to the kinetic energy, is the same in both reference frames

1l1 +P22 + 33 N 1, + N2

Derivation rules in CRAYA's reference frame are detailed in reference /1/.
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IV - Dynamics incide the phase locked tongues.

One of the routes leading to deterministic chaos is the route through the
quasiperiodicity; the simplest one involves the presence of two oscillators, whose the
dynamics may become chaotic by the increase of the amount of the non-linearizies between
them. Though this dynamics is generally related to non-linear dynamical systems, it may
be found in hydrodynamical flows, as soon as the increase of a control parameter
(Reynolds number, Rayleigh number, etc...) initiates the appearance of periodic
behaviours. So, in the iollowing, the physical examples will be taken from
Rayleigh-DMnerd experiments, which provide good illustrations or quasipariodic
behaviours in dissipative systems.

I - OUASIPERIODICITY IN RAYLRIGH-BENARD CONVECTION

Oscillators and spatial structures

In a fluid submitted to the Rayleigh-Benard instability [1]) the increase of the
Rayleigh number Ra (i.e. of the temperature difference between the top and the bottom
plates confining the fluid - see the lecture of P. Berg6) favours the appearance of new
instabilities which may be time dependent. It is the case of the oscillatory instability
(2) when we are working with low Prandtl number fl,,ids (Pr = v/D. with i, the cinemati.
viscosity and D. the thermal diffusivity). When convection is achieved with high Pr
fluid', these instabilities take place in the therma? boundary layers, by first the
fozmation and then the advection of thermal heterogeneities (3][4]. These pheno:ena may
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oe time-periodic, if the rolls arrangement is fixed,, i.e. there is no spatial phaseS~turbulence. So it is necessary to work with confined geometries, for which the

horizontal extents of the cell confining the fluid are of the same order of magnitude as
the depth d (typically in rectangular cells, L. = 2d and L, 1 to 1.5d) (figure 1).
Nevertheless, when Ra is varied, many different structures are available, though each
one can be stable in a relatively great range of Ra numbers. The point is that,

unfortunately, the choice of the spatial arrangement is not made by the experimentalist,
Sbut by the convection itself, among the different stable solutions which have the same
S~probability to be formed.

Nevertheles:, for a fixed and given structure, the evolution of the dynamical
behaviour with Ra is well determined and reproducible. This may be understood by the

fact that specific thermal oscillators and the evolution ot the coupling oetween them,
are related, in an unique way, to the spatial arrangement of the convective motion.

Experirment-i phase--sqace trajectrq- e

The convective state is generally pointed out by the measurement of a local varzable.
The velocity measurements are not really adequate to evidence low chaotic regimes,, fo±

they induce •ntrinsically a small amount of noise in the signal. So, temperature
measurements are preferred. A local probe may be put at the top or the bottom plate (to

minimize the perturbations in the fluid motion) as it has been done in helium [5] or
mercury convection experiments. But we can take advantage of the presence of temperature

gradients in the fluid to use optical device. This is particularly easy to perform with
high Pr fluid convection, near room temperature. The local temperature gradients in the

fluid deviate the rays of a parallel light beam crossing the cell,, giving then a
vertical or horizontal image, related to these gradients. Generally,, with small cells, a
vertical image is formed in a plane X,Z, with integration along the Y direction

(parallel to the smaller side of the cell). The image may be direct "shadowgraphy", or
treated by the knife-edge technique (Foucault or Schlieren image).

As the oscillators are localised in the boundary layers, (with hith Pr fluids), the
study of these images is very powerfull because we can follow the appearance and the
evolution of the oscillators in all the fluid; and by putting a photodiode in any place
of the image,, we get infornations about their time dependence,, by the measurement of the

variations of the local light intensity.

When two oscillators are present, two photodiodes can be set judiciously to have
mainly the behaviour of the one and the other oscillator. An example is shown in figure
2: the signal of one photodiode, I,(t),, is mainly sensitive to the lower frequency
oscillator, meanwhile the other one, I (t),, reflects more the behaviour of the higher
frequency oscillator. This combined measurement is of great interest in the

reconstruction of the trajectories in the phase space; if this reconstructed space is
three dimensional,, the three variables may be I(t),, I (t) and the time derivative of

one of them,, ICt) for example. Then Poincar6 sections will be drawn by taking the

points I,(t) = f(I,(t)) when I.%t) reaches a defined value I.(t) [8].

In the figure, two examples are given; one corresponds to a normal biperiodic regime,
for which we obtain the section of a torus. The other one is a strange attractor, drawn
in the same manner as the first one, and obtained from the preceding biperiodic regime
by changing the Rayleigh number.

Forced convection

In experiments on free convection, the only parameter we can vary is the Rayleigh

number, which acts together on the amount of the non-linearities and on the frequencies
of the actual oscillators. More, these frequencies are imposed by the convection, then

their ratio. But,, as we will see further,, the two parameters which are involved in th

dynamical behaviours undergone by a system consisting of two oscillators, are the
frequency ratio and the coupling or the amount of the non-lineazities. So to understand

experimental dynanics, it is very important to control independently the two parameters.
Different experimental devices have been set up where a natural convective oscillator is
forced by an external periodic oscillation. In the case of mercury convection, a

vertical alternative sheet of current associated with a small dc magnetic field has been
applied [6]. With higher Pr fluids., a local periodic heating in the lateral boundar'ee
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Lx =2d V

Figue1_:- Scheme of a small box (confined geometry), as used for Rayleigh-B6nard
convection experiments to the study of the routes leading to chaos. In this picture, the
convective structure is organized with 2X-rolls and 1Y-roll.
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Figur~e 2". a) Time dependences I (t) and 12 (t) of the ligh•. intensity,• measured

simultaneously in two places of the Foucault image in the case of a normal biperiodic
regime (f./f, = 7.2, Ra/Rac c- 324'. The Poincar6 section, obtained with these two

signals is shown in b); the dots have oeen marked each time 12 (t) = 1,, with e given

sign for I (t); c) Poincar4 section, drawn in the same manner as for b), but with a
chaotic regime obtained from the preceding one by a variation of the Rayleigh number
"f2 fý - 6.63; Ra/Rac 318).
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(7], or in the bottom plate can provide a good oscillator, coupled to the natural one.
The electrical power is driven in amplitude, A.., and frequency f,', by a synthetizor,
allowing, in prirciple, to explore the whole plane of the parameters (Atf )

In this manner, fundamental results have been obtained. A part of them will be
discussed further. Here we want just to demonstrate the appearance of chaos under the
influence of an external oscillator: the experiment is conducted with Si-Oil (Pr ! 38)
confined in a small box, as usual. At Ra/Rac = 310, a natural monoperiodic regime is
present, with an oscillator (hot droplet) whose frequency f 0 is 29.5 10"3 Hz. This
oscillator is forced by a local periodic electrical heating - in a thin conductor in the

bottom plate - just underneath the place where the droplet is growing. Depending on the
values of A and f.,, different regimes may be observed, including chaotic regimes as
shown in figure 3: the dynamical regime, periodic at first, becomes progressively
chaotic when the amplitude A.,t of the external oscillator is increased, whereas the
frequency ratio p = f I,/f0  is kept constant (p = 0.97). The Poincar6 section of the
attractor corresponding to the strongest forcing displays the typical features of
strange attractors despite the complexity of the distribution of the points (figure 4).

So we have seen that chaotic behaviours, issued from biperiodic regimes may be
observed experimentally. But to understand why these regimes are chaotic and what are
the evolutions leading to them, w- have to look first at theoretical models. They will
show to us how two coupled oscillators can exhibit a great (somewhat fascinating)
richness of dynamical behaviours.

iI - QUASIPERIODIC MODELS

The forced pegndulum

The simplest quasiperiodic system may be schematized by the forced pendulum. The
pendulum, sustained or not, is one of the oscillator; it is influenced by the second
one, given by an external periodic force which remains stable. The dynamics is then
described by the following equation:

d
2
& dO

m - + a - + mg sin 8 = A cos wt (1)
dt

2  dt

o being the variable of the system (the angle with the vertical direction in this case);
g is the gravitational field, m the mass and m is an expression which depends on the
fact that the pendulum is sustained or not. A cos(wt) gives the external periodic
forcing at the frequency o, which together with the amplitude A, is a parameter of this
dynamics.

Different expressions may be derived from the relation (1). We want here just to
mention two of them which have been particularly studied:

1) The Van der Pol equation:

d
2
9 dO

- - t (1-0 2 ) - + 8 = B cos wt (•)
dt

2  dt

which describes a sustained forced pendulum. When B = 0, the asymptotic behaviour of the

pendulum is periodic (after the transients).

2) The Duffing equation

d
2
0 dO

- + a - + 3= B cos Wt + (3)

z dt' dt

where a is a damping coefficient. The asymptotic behaviour is the rest (a fixed point in

the phase space), when B = BO = 0.

All these relations can be replaced by a set of three ordinary differential
equations, which are for the case of the equation (1): -
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dx
- = -ax -b sin y + A cos Z
dt

(4)
dt
dz

dt

with x --d=/dt and y 0+A.

This set expresses the fact that three variables are necessary to describe the

dynamics of the forced pendulum in the phase apace. (Note that this corresponds to the
minimum condition - 3d phase space - to get chaotic trajectories due to S.C.I.

properties).

As the trajectories are not easy to be visualised, in particular when they will be

chaotic, it is more convenient to draw Poincar6 sections, or stroboscopic sections at

the frequency of the forcing. So x and y values are taken, each time the phase of the

forcing has rotated 219, and the set of equations (4) beccmses an iterated transformation
in the plane of the x.y variables

X,- f(x ,y)

y.,it g(x =y./ (5)

or

r.. f'(P. ,r. )5

in polar coordinates, where %u gives, in a certain sense, the phase of the forced
oscillator relative to that of the forcing oscillator.

The Arnold model

Different models are expressed with the form (5). The simplest and the mow t
extensively studied up to day is the Arnold model [9] [10] [11), which takes only into
account the variation of the rela:ive phase T, with the relation Ti., = f (ph) such as

T. "Ifl - -sin (2np)modl1 (6)

(Note that here the phase is normalized to 1).

The parameter K gives the amount of the non-linearities. When K = 0, va 'P e +R, and
11 plays the role of a frequency ratio, since it could be the variation of the phase of
the studied oscillator (with frequency f.) when an external one (with frequency f )

has rotated 2nt (1 = f

What we learn by studying this model in the plane of the two parameters [Kr)d? A

first picture of the evolution of the different dynoaical regimes with K anid f is shown
in figure 5. When K =0, all the regimes for 0 < 1 1 are quasiperiodic i.e. % takes
all the values between 0 and 1, except for the exact rational values of fl. But as soon

as K is increased, the effective frequency ratio is no longer equal to (3. but becomes

the rotation number, defined as

P = ha + -f ( 2P) /nr

The non-linearities favour in particular phase-lockings, i.e. for a given interval of oi
values. T. takes only a definite number of values. Thib means that p has become a
rational (p i p/q with p and q integer) near the initial e value. When K is increased.
the phase-locked tongues broaden (the smaller the q is, the broader they are) and there
is appearance of the tongues with higher p and q values. The tongues are generated by
Parey sums i.e. between two tongues with pn pt /q and p. = t/qw, there is the tongue
p,= (p ale ) etween 0 and soon, from the widest tongue to the thinnest one.

On a line F = cte, we find successively, by r variatiolr. plateaus of locking states

separated by biperiodic states; for K tul , the probabilits , of observing rational and
Svlus,•.taesony dfiit numbe ofvles hsmen ha a bcm
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irrational rotation numbers are almost equal, but at K = 1, the probability of finding a

rational rotation number is close to 1, as shown in figure 6. We have a complete devil

staircase. This object is fractal and its dimension, calculated un numerical models is
D = 0.87, number which seems to be universal. It represents a local property of the map
and is defined in any point of the line K = 1; then it expresses the self-similarity of
the locking states on this line.

By a further increase of K (K > 1), an overlap of the tongues takes place leading to

a competition between differert dynamical regimes, competition which can lead tt chaos.
Indeed, the line K = I is called the critical line, as this line corresponds also to the
loss of inversibility in the maps 'P. = f,(T ) (this means that the relation yP z 9.
is not unique).

The critical line has also been calculated for 2d mappings, [10] in particular for

the standard mapping

K
'.,= + n _ -- sin (2TC9.) + b r

K
r., = r -- sin (21t P)

It is no longer the line K = 1, but a smooth curve resembling a parabola, with
discontinuities near the major phase-locked tongues. Along this curve, the fractal
dimension corresponding to the locked portions is the same universal number D. -# 0.87
as found for the circle maps, like the Arnold mapping.

ExpErimental results on the.propgerties of thecritical line

Details of an experimental study can be found in [6]. We want just to note here that
this study has been conducted on forced convection with mercury, in a small box. The
Rayleigh nunber is increased until a monoperiodic regime is reached (Ra/Rac t 4). Then,
this one is forced periodically as indicated section I. The properties of the local
plateaus of phase lockings have been studied around two rotation numbers: the golden

mean S = (,-1)/2 and the silver mean fS = 42-1 which have only "ones" (1,1,1,...) and
twos (2,2,2,... ) respectively in their continued fraction representation.

The local fractal dimension D. has been calculated by using the relation

(S /S)Do + (S /S)Do ' 1

where S is the length of the frequency ratio interval between two phase locked tongues
p,/q, and p2 /q.; S, and S are the distances of the intermediate tongue, generated by
the Farey sum (p,+p )/(q,+q 2) respectively to its two "parent" tongues p,/q, and p2 /q 2 .

The results are in good agreement with numerical studies

Do(p = f ) = 0.86+0.03 ; D(0 ( 11f) = 0.85±0.03

III -DYNAMICAL PROPERTIES NEAR THE CRITICAL LINE

The study of tle global properties, in the plane of the parameters [K,Q] (Arnold
model) has pointed out the fundamental aspect of the phase locking phenomenon which
dominates all the dynamical behaviours, when the non-linearities are sufficiently high.
We will discuss now some points, with more details, leading to the understanding of the
mechanisms involved near the critical line and leading to chaos.

Phase intermittencies

They correspond to a specific behaviour, which is generic of the approach of
phase-locking. it can be understood first by studying iterated models, as those
described previously, but also with the 2d Curry-Yorke model [12] [13]. In a major
phase-locked tongue, with p = 1/q, the phase T. takes repeatedly the same values

'PI'f2, p , T, , .... etc. versus n. But very near the tongue (in B in the figure 7a),
the phase shows a very interesting b.haviour: for a certain number of iterations (which

'8
1.
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Fiu_qre 6_: Rotation number p versur D for the circle map at K = 1. The enlarged picture
shows the self-similar nature of the staircase (from [10]).
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F re_. 7: a) Schematic situation of the phase intermittencies near a major
phase-locked tongue; b) T. variation versus n for 2d model calculatea for a point like
B. Every seventh point has only been drawn (B is near the phase-locked tongue 1/7).
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corresponds to a time duration in experiments), the sequence of T values is very
similar to this observed in the tongue, but from "time" to "time", the plateaus of quasi
phase-locking are interrupted by fast rotations of the phase, to recover the actual
rotation number p x l/q. When the system is below the critical l3ne, the fast rotations
of the phase are periodic (figure 7); this leads to specific properties:

- In the Fourier spectrum of p(n) (which may be seen as T(t)), there is appearance of
a low frequency 6f, which is the frequency of the fast phase rotations; this one is
given by the distance of the actual rotation number to the locking state; many of its
harmonics are also present.

- In the Poincar6 section, the density of the points is non uniform, with a !1gher
density in the regions corresponding to the quasi phase-locking.

- The return maps T.., = 1. looks like those obtained from amplitude intermittencies.

When the non-linearities are increased, beyond the critical line, the behaviour
remains very similar but the intervals between the fast rotations of the phase has
become chaotic, leading to a broadening of the peaks in the Fourier soectrum, to a
Poincar6 section with wrinkles and a ncn-invertible return map.

Note that these phase intermittencies may be seen as dynamical phasons.

The experimental results

As said before, the results concern Rayleigh-B4nard convection in a small cell,
(L. = 2d, L = 1.2d) filled with Si-Oil (Pr = 38) for the example described in the
following. In a certain domain of Rayleigh numbers, and for a given spatial arrangement,
two oscillators are present in *he convecting fluid, with a rotation number p = fI/f,

around 1/7 (14). The phase-locking p = 1/7 (f, e 9.5 10-23Z, f2  66 10-252) is observed
for the interval 320 < Ra/Rac < 322. At the exit of the locking state, by varying the
Rayleigh number, (Ra/Rac = 319.5), there is evolution of the dynamical behaviour, so
that the Fourier spectrum of a convective signal becomes typical of phase
intermittencies (see figure 8); indeed we can notice the presence of the peak at the low
frequency Bf = 7f,-f. and of its harmonics.

From the Poincar6 section (figure 9), drawn as described in section I, we can get the
variation of the relative phase T with time. As expected, T does not vary linearly with
time, as it wovld be the case in a normal quasiperiodic regime, but with tendency to
phase-locking, interrupted by fast rotations of the phase. The longer are these periods,
the nearer 1/7 is the rotation number.

From the successive 4P valaes, we can draw the return map •, = f(% ). Clearly, this
map indicates the intermittent nature of the dynamics by the presence of points on (or
very near) the bissectrix. More. in the case shown figure 9c, we can affirm that the
regime is very near the experimental critical line for near the point P, an inflexion
point seems to be present. So the corresponding dynamical behaviour may be chaotic,
though very weakly. This weak.y chaotic behaviour, given by phase intermittencies before
falling in a phase-locking is a general feature observed in Ray]eigh-B6nard convection,
since by varying the Rayleigh number, not only the amount of the non-linearities are
varied, but also the frequency ratio: so this observed evolution is in agreement with
the behaviour given by the models, if we consider the related variation ia the
two parameters.

Direct route from quasiperiodicity to chaos

The models

We have seen, that on "the critical line", we go from one phase-locked tongue to
another one when the frequency ratio is varied. Nevertheless, it remains some "points"
(of zero measure) which correspond to quasiperiodic orbits i.e, those for which the
rotation number has remained irrational when increasing the non-linearities. The most

famous irrational number is the golden mean, 1= (,-1)/2 whose representation as a
continuous fraction contains only ones

All
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Fiigure 8: Fourier spectrum of the convection signal Is (t) (Ra/Rac c- 319.5;
ff 6.91). The f-scale does not permit to see f..
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Fioure 9: a) Poincar6 section corresponding to the regime •./f, = 6.91; b) Evolution of
the phase p versus time. The phase has been measured in the Poincar6 section as
indicated, every seventh point has been drawn. (Same evolution in the frame for
fI/f= 6.99); c) Experimental return map V,,, =f(q.)
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and has, 'herefore, the slowest possible convergence in a rational approximation -

q,
(successively,, p I/q, = 1/2, 2/3, 3/5, 5/8, 8/13,, the numbers 1, 1,, 2,, 3,, 5. 8, 13....
being the Fibonacci sequence).

Theoretical and numerical studies [15] have shown that if the irrational number is
preserved when increasing the non-lineariuies, the successive combinations p, f. ,-q0 f
appear in the Fo-rier spectrum. The higher are the q, and p, values, the nearer we
approach the critical line. In the particular case of p =f 1,, we have to observe then a
very la.-ge :ncrease of the nunber of peaks with frequency lower than f (see figs2e 10).
These peaks may be regarded as due to the generalisat:,on of the mechanism giving the
peak 8f, (related to phase intermittencies) near strong phase-locked tongue as discussed
before. With this picture, all the peaks SfI = p1 f -q1 fo,, corresponding to the
distances or the actual rotation number to its successivŽý fraction representation covld
be explained by the superposition of different phase intermittencies,, relative to tie
different neighbouring phase-locked tongues.

At the critical line, as we know, there is overlap of the tongues but this overlap is
not simultaneous for all the tongues. At first, the nearest and (thinnest) ones overlap,
and the peaks, given by the highest order combinations in the spectrum broaden, followed
then by the others, peak by peak.

Exeqriment

This evolution to chaos has been well studied by A. Fein, M. Heutmaker and J.P.
Gollub [7] and by J. Stavens, F. Heslot, A. Libchaber [6] on experiments with forced
Rayleigh-B6nard convection. In the first case, a convecti-e water layer in a small cell
was brought to a monoperiodic regime by increasing tha Rayleigh number (f. = 0.186 Hz).
Then a periodic forcing was imposed by modulating heat sources in the short sidewalls,
at constant Ra (Ra/Rc = 57).

The experimental conditions of the second reference have been reported above, in
section II. In the two cases,, the rotation number was kept equal to £f (up to 0.03%), by
adjusting f (p = f. /f 0 <l) at each value of the amplitude of the external forcing.
The observations are very similar to the results obtained theoretically and numerically;
in particular all the peaks p, fo-q 1 fx have been measured, until 55f.-89f.. and
combinations of them. The self similarity of the spectrum has been pointed out at the
onset of chaos, for the golden mean and the silver mean [6];, indeed this self similarity
is due to the particular periodic representatinn as a continued fraction of these two
numbers.

This direct route to chaos from qu.siperiodicity is not reserved to the "noble'"
irrational numbers as Q3 and Q s but it is expected for any irrational number. The
probability of finding this kind of number is very low in a nitural convective
experiment; nevertheless one of them with high Pr fluid, has provided a dynamical
behaviour related to this rouce.

The conditions of the experiments [16] are the same as these which have been reported
for the observation of phese intermittencies, but for a slightly differeat value of the

Rayleigh number (Ra/Rac L 317). For this situation, the rotation number is p = f/f 2 (f
and f = natural frequencies of the coniection) with p = 1/6.59. The different rationals
p,/q, which approxi'ate this number are 1/6, 1/7, 2/13, 5/33,... . All the peaks
qlf-p f are present in the Fourier spectrum of the convect ",e signal (figure 11).
Nevertheless, we have to remark that the lowest frequency which would correspond to
A = 33f,-5f is broadened. This is in agreement with the fact that the studied regime
is slightly chaotic and probably just beyond the critical line.

Two oscillators evolution in a'freeRay.,,B6nard eperiment

As we have already said, in a free Rayleigh-B~nard experiment, only the Rayleigh

N
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number can be varied and its variation acts on both the coupling intensity and the
frequency ratio of the oscillators. Nevertheless some interesting results have been
obtained re-ently on the behaviour of two natural oscillators near the critical line. In
this case indeed, the oscillators are both free to r,act on their mutual influence and
the rele-varnt phase space is four dimensional. (Note once more that -11 the study
corresponds to a well defined and stable spatial configuration of the convective rolls).

The exact evolution of the observed dynamical regimes 3s as follows:

- At Ra/Rac = 317,, the regime is the one, d~scribed just above i.e. a iovr chaotic
behaviour obtained directly from biperiodicity (p = 1/6.59).

- 317 < Ra/Rac ( 319.5, different chaotic regimes take place (1/6.59 < p < 1/6.9).

- At Ra/Rac t 319.5 the regime is unambiguously related to phase intermittencies. It
has been discussed at the beginning of the section III.

- Then a locking state is observed for 320 < Ra/Rac < 322, with p = 1/7; it is
followed by a normal biperiodic :egime when increasing further the Rayleigh number.

We are interested here in t%.• understanling of the different chaotic regimes which
has been observed in the range 317 < Ra/Rac , 320, knowing that the observations at the
ext~emltles of the range correspond to dynamical regimes very near the onset of chaos,

then near the experimental critical line. (When phase intermittencies with p = 1/6.91,
we have seen that the return map is just at the limit of inversibility). In these cases,
the study of Fourier spectra and the treatment of the attractor's Poincar6 sections have
provided fundamental informations about the dynamics. When the regimes become more
chaotic,, it is necessary to rely on other methods to get quantitive characterization

Fortunately, since some years, theoricians have searched for and found algorithms,
allowing to calculate typical features of chaotic states fron. experimental data, namely
the fractal dimension of the attractor [17]., 18] the metric entropy of the chaotic
state [19]1, [20] and then., more recently [21], [22], [231 the positive Lyapunov
exponents. For all these methods, the attractor is at first reconstructed by the time
delay method,, as disciissed in the lecture of Berg&.

We used some of these algorithms to study the different observed chaotic regimes.

In a first step, the fractal dimension, or more exactly the correlation dimension was
calculated. using the algorithm proposed by P. Grassberger and I. Procaccia [17], and
which is discussed in details -n the lecture of Berg6. T"..2 signal, from which time

series of 15.000 points were obtained, was measured in the same nlace on Foucault image
of the convective fluid for each Ra/Rac value (the digitalisation was made with around
16 points per fast period E, = 1/f2). Then these time series were processed in the same
way. As expected, the slope v of the characteristics log[CMR)] = f(log(R)) with R the
distance in the phase space increases with D, the dimension of the reconstructed phase
space, until it reaches a nearly constant yalue (figure 12); this value gives a fractal
aimension of the chaotic attractor and then a lower bound of the effective dimension of
the relevant phase space. But it can give also a quantitative estimate of the evolution
of the chaotic state, with the hypothesis that the dissipation remains constant along
the diff?rent measurements.

To confirm this assumption, the metric entropy has also been calculated, with an
algorithm given by P. Grassberger and 1. Procaccia and discussed in details in [19].

Just we recall here that the method allows to get a value of the entropy, K2., which is a
lower bound of the Kolmogorov entropy K2.|

K < K

with

I C,, (R) '

K I n (9)i EIC (R
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- is the time delay taken to construct such component of the points in the phase space
(namely X(t 1 ), X(t +,r), X(t +2•r... .. X(t+(D-l)'r) in a D dimensional phase space if
X(t ) is the time series). The K. calculation as we can see from the relation (9) takos
advantage of the calculation of the fractal dimension, since K is obtained from the
shift of the successive curves logC(R) = f(R), with increasing D. In figure 13, the
rssults are given for two attractors for which respectively v 2.4 and v = 3.1.

Some remarks have to be made:

1) As it was already pointed out for the calculation of the correlation dimension v
[24], the good parameter seems to bo, not the dimension D but rather the embedding time
r= (D-1)T i.e. the length of the time sequence taken to define a point in the
reconstructed phase space.

2) In the case of the discussed experimental data, the K. values vary as the
correlation dimension

K2 c 2 10-3 s-1 for the attractor with v = 2.4

K2  5 10-1 s°- for the attractor with v = 3.1

this confirms the first idea that the correlation dimension varies in the experimental
sequence as the amount of chaos. (Note that v = 2 corresponds to a torus in the phase
space, i.e. a biperiodic regime without chaos).

3) The entropy may be regarded as the inverse of a characteristic time of tte
divergence of the trajectories. In the case of the two c~nsidered attractors, if K, is
normalized to the longest period -r, of the regime, we find K2,T = 0.21 for the flrst
attractor and 0.53 for the most chaotic one. In this later case, the characteristic time
of the divergence in the phase space is around two times the longest period of the
dynamics.

Now let us return to the evolution of all the chaotic states under study
(317 < Ra/Rac < 320). From the v values (and K2 values in some cases), we remark that
the variation of the amount of chaso is non monotonous as shown in figure 14. How we can
explain this resuit? As mentioned previously, the variation of the Rayleigh number
induces tne variation of the frequency ratio p of the two oscillators. In the considereu
experimental situation, it turns out that sn important variation of p occurs within R
very small range of Ra/Rac; so in a first approximation, we can consider that the
dynamical properties are then essentially due to the frequency ratio variation, as
pointed out by the two end cases (p = 1/6.59, V = 2.4; p = 1/5.91, v z 2.1). It follows
that the v variation versus p is related to the local prope-ties of the critical line.

Direct -omparison dith theoretical and n'tmerical models is (tfficult sincc the
results obtained here correspond to a four dimensional phase soace [30] but nevertheless
they are in qualitative agreement with theoretical predictions.

Note, to finish this discussion, that the calculation of the positive Lvapunov
exponents X, has confirmed the presence of two positive N' [25i this calculation was
performed on the most chaotic signal (attractor in the figure 12b) with the algorithm
developped by J.P. Eckmann and D. Ruelle, after testing this method on numerical models
[26].

IV - DYNAMICS INSIDE THE P:IASE-LOCKED TONGUF.S

We have seen how a biperiodic regime can become chaotic,, together on numerical models

and in physical situation% but the examples we have discussed, were all related to the
direct onset of chaos from biperiodicity. What happens whe.i the rotation number is
rational and that the non-linearities are increased, i.e. when the regime remains inside
a phase-locked tongue? Without entering in the details which may b2 found in particular

in [11], it is important to note that the route to chaos is different from those studied
before. The study of the circle map has shown that inside the tongues, the approach of
chaos is achieved by period doubling (29] i.e. in the tongue p/q, appears progressively
the periodic orbits with rotation number (p.2')/(q.2*). Note that the value of the

-
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SF~qure_13. Calculated K. values versus the embedding time t

n(0) = ttractor with v = 2.4 p = 1/6.59;
(X) = attractor with v = 3.1 p = 1/6.62.
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Figure 15: Schematic representation of phase-locked tongues for the circle map (from
[11]). The dashed area correspond to non-chaotic regimes and the wavy line is the

critical line. The dotted curves represent different paths which may be followed in an
experimental situation.
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rotation number is preserved, but corresponds to different values of the actual

frequencibs. The sequence of period doubling (n - c) may be not uomplete when chaos
appears and the line in the plane of the parameters [K.11], which gives the onset of
chaos is not simple, as shown in figure 15 (taken from [11]). A great interest of this
figure is to show, beyond its esthetic aspect a scheme of the possible imbric&tion of
the different regimes (biperiodism phase-locking, biperiodic chaos, period doubling and
so on), when an experimental path is followed.

in fact the eyperimental situations are often much more complicated than those which
are deduced from the circle maps, Some parts of the experimental results may agree with
the predictions, others desagree but could be explained probdbly from 'd models. ln
particular, in an experiment of forced convection with mercury [28], the detailed study
of the approach of chaos inside the tongue 8/13 has been performed. A complicated
structuration of different dynamical regimes has been observed inside the tongue, when
the amplitude of the forcing was increased. In some regions, the influence of the
neighbouring tongues was found.

So if a conclusion has to be made, we could say that the dynamics of two coupled
oscillators, and only two, is fascinating by its great richness. This kind of behaviour
is not a "privilege" of theoretical models, but it can be found in many systems. We have
3een some examples in convection, but the different dynamical regimes, related to the
interaction of two oscillators and leading to chaos, can also be responsible of
behaviours observed in mechanical systems, biology, climatology, etc...
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I - RAYLEIGH BENARD CONVECTION

Convection is a very common phenomenon in nature and its study and understanding

have fundamental importance in meteorology, oceanography, geophysics etc... and in many
transport processes involved in practical applications (material science, power
engineering, combustion etc...). The term "convection" seems to have been applied first
to denote the transportation of heat through fluid motion. Generally speaking,

convection arises when a thermal inhomogeneity exists in a fluid. The competition
between the destabilizing effects like buoyancy and stabilizing ones like viscosity
leads to an instability. Such instabilities are characterized by the existence of a
threshold beyond which there is organization of fluid motions into a relatively ordered

pattern sometimes called "dissipative structures".

Rayleigh-Benard convection is one of the simplest ii.stabilities [1]. It is

related to the case of a horizontal layer of a thermally expansive fluid which is
confined above and below by rigid plates of good thermal conductivity, submitted to
purely vertical adverse thermal gradient (adverse means "heated from below").

m of the Prandtl number

Let us first consider the layer of fluid and suppose the existence of a
localized thermal gradient. The propagation of this localized gradient through the whole

FI
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fluid layer is governed by a heat diffusion equation. The diffusion co-fficient of the
temperature is

Ar
Dr

P00 C

where A is the thermal conductivity of the fluid, C the specific heat at constant
pressure and p. the density. On the other hand,• the diffusion coefficient of a velocity

gradient (more generally of the vorticity) is simply the kinematic viscosity V = 71/P0.

These two diffusion coefficients allow us to calculate the order of magnitude of

the characteristic relaxation times r of the gradients ir. a layer of depth d. For the

temperature:
d 'ID .

and for the velocity:
S d Z/v .

The ratio of these times is the Prandtl number which controls the temporal behaviour in
a fluid layer submitted to the two kinds of gradient. Then in convective motion,

't b V

Pr = - = -I
r Dr

We may have two opposite situations:

(a) High Prandtl number fluids: the vorticity diffuses (then the velocity relaxes)
faster than the temperature. Then the velocity perturbations follow the temperature

perturbations without delay; one says that the viscous effects are dominant.
(b) Low Prandtl number fluids: the temperature relaxes faster than the vorticity: a

velocity perturbation may persists even after the thermal cause has disappeared: the
inertial effects are dominant.

From these two opposite situations, one can point out the qualitative analogy
between the Prandtl number and the xeciprocal of the Reynolds number Re, because, in a

flowing liquid, Re measures the balance between inertial terms and viscous terms.

1.2. Mechanism of the instability

The origin of the instability can be seen as follows. If fluid elements are

displaced along the paths HE' and BB' (see Figure 1) a torque which would amplify the
displacement is created. After the displacements HH' and BB' have occurred, the

temperature difference between the two fluid elements diminishes, due to the thermal

diffusivity D., with a characteristic time on the order of:

d 2
Tth D -Dr

where d is the depth of the layer The characteristic time of the displacement HH' - BBE
depends on the forces acting on the fluid - that is, the buoyant force due to the

density difference and the viscous frictional force. This characteristic time T. behaves
like:

p0 grad OT

14 77 : dynamic viscosity
a: expansion coefficient of the fluid

po : mean density

g : gravitational acceleration.

The condition for the onset of sustained motion is that the time T,, (lifetime of the
cause) be greater than - (time for appearance of the effect). Hence the condition for

sustained convection is:

-S. M,
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po grad
6T > constant.

7D,

The left hand side, called the Rayleigh num. .ta, is a nondimensional measure of the
temperature difference 4T. The inequality above states that there exists a critical

Rayleigh number Rac (or equivalently, a critical temperature difference 4T ) above which
the state of rest ceases to be stable and convection begins. Convective instabilities

were first clearly observed experimentally by B~nard in 1900 and first interpreted by

Lord Rayleigh in 1916; it is for this reason that the two names are associated to the

phenomenon.

Fluid Air Waterl Si oil
-1l stokes

(d-1 cm) 17' 0.1" 2.2,

Pr 0.7 _7 900

Table - Some critical temperature differences co.:responding to Rae for some fluids
near room temperature.

I;.3 ial organization

We have seen that when the temperature difference applied to a horizontal fluid
layer is increasel beyond a given value (or Ra > Ra), the fluid begins to move. How
does it do this ?

To study the convective structure, it is necessary to look at the fluid from

above. This is the reason why, in experinents which deal with this problem, the upper
plate is often made of transparent sapphire whose thermal conductivity is large compared
to that of the usual fluids (in some c~ses, when the (expensive) sapphire is not
available, one can work with glass plates but the results can be slightly different).

The spatial organization takes the form of ascending and descending motions

which carry along the fluid, in rolls turning clockwise and counter clockwise
successively in space. These almost periodic motions obviously introduce in the fluid a
succession of "warm" and "cold" currents. One can make these currents visible (without

perturbing the fluid) through the temperature gradients which induce refractive index
gradients able to refract light beams so that the fluid acts as many local lenses. Then,
a parallel light beam which crosses the fluid is focused where the refractive index is

largest (cold streams) and diverges where the refractive index is lowest (warm streams):
the light intensity modulation of the beam after crossing the convective cell reveals
the structure of the motion with bright l~nes corresponding to downwards motions.

If the horizontal extent of the layer is large compared to the depth d, we
generally obtain (after a transient period which may be very long) a stationary
(tim,'e-independent) roll pattern which has the following properties (near onset):

(a) the axes of the rolls tend to be perpendicular to the lateral walls.

(b) In the core of the pattern, zelatively far from the boundaries, the axes of
the rolls tend to be equidistant and, so,, locally parallel.

Except for some particular cases, these two conditions cannct be simultaneously
fulfilled, creating a topological frustration. This frustration gives rise to defects

such as dislocations, bending of the rolls, grain boundaries. So, very generally, in
large containers the natural structures are disordered see figure 2a) [2].

By increasing the Ra number,, the convection leaves the steady state and becomes
directly turbulent. In the case of high Prandtl number fluid the onset of turbulence is

larger than 10 Ra., but depends on the particular conditions. For low Prandtl number
fluid, the onset of turbulence may be very near Ra But the common and important
feature is the following: in both cases, this turbulence is due to the erratic motion of
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Sthe rolls themselves. In other words, the phase of the rolls is continuously changing;
"this is the re2son why this kind of turbulence had been called "phase turbulence". This

phase turbulence is characterized by a continuous change of the convective pattern with
complex motion of all kind of structural defects. This phase turbulence is not well
understood. Note, however, that in the case of low Prandtl number fluid, some physical
mechanisms have been recently elucidated [3] but many progress as well experimental as
theoratical remain to be done.

1.4. Towards confined ceometries

How can the order of the convective pattern be preserved, the phase of the rolls
fixed and, then, manifestation of phase turbulence prevented ? It suffices to
drastically reduce the number of possible configurations which are compatible with the
imposed contraints. A natural idea is to place the fluid in a cell whose horizontal
dimensions Lx, L are on the same scale as the height. The aspect ratio, defined as
I - Lid, is small in such a cell and the number of rolls necessarily limited. For
example the presence of lateral boundaries separated by a distance of only twice the
depth stabilizes the convective structure and reduces the number of rolls to two, at
least for moderate values of Ra. Note that in the direction perpendicular, the distance
Ly between the boundaries is even smaller. Experiments show that with this type of cell,
spatial order is indeed preserved over a very large range of Ra (typically hundreds time

Ra ) . This kind of experimental cell corresponding to a confined geometry is sometimes
called "small box" (see figure 2b). Under that conditions, the first instability
encountered (after the onset of steady convection) is that of the thermal boundary
layers. In these boundary layers, thermal oscillators develop which can have different
forms. The important fact is that, by increasing Ra, one obtains, first, only one
oscillator whose pulsations are easily visualized through simple optical means. The
corresponding regime is periodic (i.e. the temperature and velocity of the convective
fluid vary periodically with time), with a frequency well determined and stable [4].

By increasing the control parameter Ra, the regime becomes more complicated and,

finally, a turbulent state is reached. But, this turbulence is not related to the
interaction of many complicated spatial modes like in the case of the large aspect ratio
cells (phase turbulence). On the contrary, in such a small box, the turbulence is
related to the interaction of a very small number of modes or degrees of freedom. To
distinguish these last turbulence from the phase (or developed) turbulence it is named
"deterministic turbulence" or "chaos", or even, "temporal chaos" to well stress the fact
that spatial effects are not involved. As a matter of fact, Rayleigh-Benard convection
in confined geometry can be considered as a dissipative dynamical system.

II - BASIC CONCEPTS ABOUT DISSIPATIVE DYNAMICAL SYSTEMS

II.1. Definitions and examples

A consequence of what we have discussed in the case of a confined geometry is
that we can expect to be able to interpret Lhe corrr3ponding turbulence in the frame of
the theory of non-linear dynamical systems with a small number of degrees of freedom
[5]. Let us rapidly address the question: what is a dissipative dynamical system ? An

example of dynamical system is for example,, a forced (and sustained) pendulum. The
dissipative character is due to the presence of unavoidable friction and the existence
of permanent oscillations is allowed by a convenient sustaining. In a general manner,
the time evolution of a dynamical system can be described through a set of ordinary
differential equations. In all that follows, we will consider that these equations are
non linear, these non linearities giving all the richness in the behaviour.

For example~we will consider a system of 3 equations:

dX/dt = fX, Y,Z)
dY/dt g(X, Y,Z) (IZ.1)
dZ/dt h(X, Y, Z)

dynamics is represented by the solutions of (II.1):
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X = F(t) Y = G(t) Z = 0it)

which give the time evolution of the various variables allowing to determine the state
of our system.

In an alternative description of the dynamics, one considers the trajectory of
the point whose coordinates are X, Y, Z; doing so, we define the so called phase space,

the coordinates of which are the variables of the system. The prime importance of this

particular space will appear all along this lecture.

As an illustration,, let us look at a simple example: that of the sustained
pendulum as modeled by Van der Pol whose second order non-linear differential equation
is:

d IX/dt 2_ (e-X 2) aX/dt + X = 0 (I1.2)

Equivalently, we can describe the system by a system of 2 first order-equations:

dX/dt = Y

dY/dt = (e-X 2)Y-X

in which the two degrees of freedom, i.e. the position X and velocity Y of the pendulum,
clearly appear. The motion of the point of coordinate X, Y in the phase space tends to
the asymptotic trajectory which is a closed loop,, named the "i2mit cycle". Note that

this limit cycle is only reached after a long time during which the trajectory is
progressively attracted towards the limit cycle,, and named, for this reason, attractor
(see figure 3).

The existence of an attractor arises from the ditsipation of the system
represented here by the second term of equation (11.2). In the same manner, dissipation
produces area (or volume) contraction in phase space and, as such, the dimension of the
attractor is lower than that of the phase space. In the example quoted above the

attractor has a dimension 1 in a two dimensional phase space.

11.2. The simplest attractors, their Poincar& section and corparison with mapp ins

The simplest attractors are the fixed point corresponding to the state of rest,
the limit cycle to the periodic regime, and the tori which correspond to the
multiperiodic regimes. Furthermore, instead of considering the full trajectories, one
can consider its intersection with a plane (or hyperpla- . -- representation obtained

this way, the Poincar6 section, has a dimension low .ed by 1 in comparison with the
original representation. In particular, this procedure allows one to draw on a sheet of
paper the Poincar6 section of an attractor immersed in a three-dimensional phase space.
This procedure is particularly usefull in the case of experimental attractors. As one
can see on figure 4a, the Poincar6 section of the trajectories of an attractor embedded

in a three-dimensional phase space consists in an ensemble of points P, P , P ...
Instead of considering the full trajectory, one can focus our attention on the
properties of this ensemble P . A very rich and simple way to do so is to compare this
ensemble with models called "iterated nap". In a two-dimensional case, if XA, Y, are the

coordinates of a point Pý, the general form of such a mapping reads:

meaning that a point P'., is defined as a function of the previous one P. An ensemble
k'

of points is thus generated, when the "discrete time" n runs (see figure 4b). The
topological properties of this set can be usefully compared with that of an experimental
Poincar6 section. This method presents great advan'.ages: comparison between full
trajectory of an experimental attractor with that of a continuous three-dimensional flow

(i.e. a theoretical model) would require a numerical integration of this flow, a
delicate and time-consuming matter compared with the iteration of a two-dimensional
mapping.

Still more simple and nevertheless very useful is the one-dimensional map. Only
one variable is used in such a mapping which can be written:
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cych.

* B

Fi.3- Phase diagram of the Van der Pol
equation (e = 0.4). The asymptotic
solution to this equation is represented

in the (8,) phase plane by a closed
curve,, the limit cycle towards which all
trajectories converge.

S C

Eig.4a - Simple attractors and their Poincar& section. On the left the
limit cycle whose Poincar6 section by the plane S is a point P0 . On the
right, the torus, whose Poincar& is the closed loop C.

I , I /

Fitb - Comparison between a Poincar& section and a two dimensional

mapping.
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This 2llows usef comparison with the txperimental "r .urn maps". Consider a
variable X of an experi,ý r:al dynr.,ical system, suppose that this variable undergoes
successive mavima .... - I . 2 . etc...

The diagram = (() is the "first return map" when the one obained by
plotting Xk.= f(), is named "second return map".

11.3. Iteration of a one-dimensional n__,

Classically, the tools used t.o study a on,!-dimensional map are the graphs in the
(Z,,,,) plane of the function f:4,,= f(X) ind of the identity map: K,,= X. To
illustrate the method, we will take as an example the nonlinear mapping:

X,.A I 0 k(-4,),, Xk (0,i).

The graph of the function f(M = 41A X(I-M for i. given value of M between G.25 and 0.75
is zero at X= 0 and X= 1, and has a maximum i.qual to IA at X= 0.5. Witn the help of
this graph, let us now study the iteration dýfined above, starting from an initial
condition f. (Ox = 0.7). The first iterate 4 is at the intersection of the graph f with
the vertical line with abscissa 4 (see figure 5). Similarly, the second iterate

= Vf( ) is located at the intersection of f with the vertical line with abscissa I;,
and so on. A simple &nd efficient method of constructing the successive iterates
consists of using the identity map,, or diagoiial, .= X. Indeed the horizontal line

intersects the diagonal X = X at .a point with X= 4. It then suffices to
draw a vertical from this point without refe-ring to the abscissa axis.

By repeating the sequence of operations:

- draw a vertical from the diagonal till its intersection with the graph of f,
- from the point obtained, draw a horizontal until its intersection with the diagonal,,

we obtain the successive iterates of the mapping. We ascertain from Figure 5 that the
iteration converges to the point with abscissa 2 , the intersection of the diagonal
with the graph of f . One can easily verify that any initial condition 4 chosen

converges to w * under iteration of f with the exception of the endpoints 0 and 1 of the
interval. It is clear that any point of intersection of f(l) with the identity map is
itn own iterate; it is a fixed point of C. This is the case for the origin: taking

= 0, we find _= 0, 4= 0, etc. However, 'or a value of % that is arbitrarily close

but not equal to 0, the iteration converges to X *. A point at a small e,'stance from the

origin moves further away from this fixed point, which is therefore called unstable. In
contrast, the fixed point X * towards whicn the iteration converges for any initial
condition in ]0, 1[ is a stable fixed point.

There is a criterion for determining whether a fixed point is stable or unstable
which does not require tedious calculation. The graphical construction shows that if the
slope of f(M at the fixed point is of absolute value greater than one, then the fixed
point is unstable; this is the case for the zrigin. On the other hand, if the slope of sf

is less than one in absolute value, then the iteration converges towards thIe fixed

point: this is the case for X2.

III - TTOWARDS DETERMINISTIC TURBULENCE OR C'IAOS

111.3. A definition of chaos

We will say that a dynamical regime is chaotic if the power spectrum of a

variable of the system (amplitud, of a p'ndulum, velocity of the fluid in a convection

experiment... etc) contains a continuous part - a broad band - regardless of the
possible presence of peaks. Or else we may use the criterion that the autocorrelation

function of the time signal has finite ;upport, i.e. that it goes to zero in a finite
time. In either case, the same concept is involved: the loss of memory (or similarity)
of the signal with respect to itself. Consequently, knowledge of the state of the system
for an arbitrarily long time does nct enable us to predict its later evolution.
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- Graph of f( X. = 4P• (i-2, --- /
for p = 0.7. The fixed points of the
map are the intersections of the graph
with the d-igonal. There is a stable ÷
fixed point • towards whic., the f( - /
iterates of 1ii -. tial cond.tions in
the intervaý ~0, IL converae. The origi1'
is an ui~table f•ixed point. The FIR\
stability of a fixed point can be
determincd from the slope of the tange.it
of the curve at that point: if the /
absolute value of the slcpe i& less thin
one, the fixed point is stable lt')o L/
and otherwise it is unatabi: (0),. X.

0 *o - •*r-

Fi_.6 - Behaviour of neighbouring tra3ectories in phase space. On the left,
the two trajectories remain neighbour and similar when time runs (non
chaotic regime) but they diverge rapidly becoming completely dissimilar in
a chaotic regime.

i.q7- The first step of the construction of a chaotic (or strailge)

attract-,:. The ensemele of the initipl conditions lie in the rectangle ABCD
which %s contracted along XX' (attraction) and stretched along Y"
(S.I.C.), the "mean" trajectory bring drawn as a continuous loop.

,~ -, '4nI CA~..A. ?,er~s n."~.,nrfl.v,'~ *"-*'- - -- ,



Essertially, this means that we are making unpredictability the quality which defines

chaos. Aa a matter of fact, prediction is based on the possibility to extrapolate the
past towards the future. This works very well in the case of periodic signals because of

the repetition of a pattern (permanence of the sel'f-similarity). The loss of
self-similarity does not allow this extrapolation to be done, except for very short time
intervals. In the phase space, the question of permanence (periodicl or loss (chaotic)
of the self-similarity has a particular and important consequence. In the case of a
periodic (or multi periodic) signal, two neighbouring trajectories will remain Ea when
the time runs (conservation of similitude). On the contrary, they will diverge in the
case of a chaotic signal (loss of similarity) see figure 6. This very important
property of the trajectories of a chaotic regime is called Sensitivity on Initial
Conditions or S.I.C. Once more, the consequence of S.I.C. is the following: even a very
small (infinitesimal) difference on the knowledge of the exact condition of the system
will be (exponentially) amplified and, as such, has dramatic consequence in the
subsequen. behavior, producing impredictability. Then, it suffices that a system
presents the property of S.I.C. to be chaotic, whatever the number of its degrees of
freedom may be. Indeed, we have arrived at a highly nontrivial result: the impossibility
of pre~icting the behavior of certain deterministic flows with only a few number of

degrees of freedom [5](6] !

111.2. The key of chaos: the strange attractor

Returning to figure 3, we have yet seen that all the points corresponding to

different initial conditions are folded back to the limit cycle, the attractor of the
periodic regime. Let us see, by comparison, how it is possible to construct the
attractor of a chaotic regime, We take the simple case of a three-dimensional phase
space; see figure 7. Let us start with initial conditions (t=O) lying the rectangle
ABC.). When the time runs, we have two opposite effects; in one direction, let us say
X X' we have contraction towards the attractor, but in the other Y Y' we have divergence
(S.I.C.). So, the rectangle is at the same time, contracted (area contraction due to
dissipation) and stretched (S.I.C.). Then, the rectangle becomes narrow and elongated;
but in order to remain in a bounded region of the phase space it has to fold. So, after

one turn (t=l), we are back to the starting plane which we can choose as the Poincar&
plane (in the following, we will not consider the full attractor but only its Poincar6
section). Due to the combined effects of contraction, stretching and folding, the
nitial rectangle has been transformed into some kind of horseshoe. With time

'eolution, contraction stretching and folding cortinue to act on this horseshoe, giving
some kind of double hairpin after two turns (t=-2) see figure 8. When many turns will be
made, one obtain, in the Poincar6 plane, a complicated structure with an infinite number
of sheets. One can see on figure 8 that the transverse structure of the Poincar6 section
is formed according to the same manner than a Cantor fractal ensemble. So, a chaotic
attractor is a fractal ob)ect with a non integer dimension D (here 2 < D < 3). Because
of the very particular and complex topology of these chaotic attractors, they were named
"strange attractors".

Among the conclusions ot this geometrical reasoning, one can point out the fact
that a strange attractor (i.e. an attractor with S.I.C.) can exist in a low dimensional
phase space (minimum 3 dimensions). That means that chaos may appear in a system with
only 3 variables (or, in this context, 3 degrees of freedom). In other words, the system
of 3 differential equations (1.1) may have chaotic solutions in spite of its
deterministic character. This is the reason why this kind of chaos has been named

"deterministic chaos" (or deterministic turbulence if we deal with an hydrodynamical
system).

111.3. Brief introduction to bifurcations

When discussing about Rayleigh-Benard convection, we have seen that for values of
Aa < Ra. the fluid remains at rest whenfor Ra > Ra,,convective velocity is present. We
observe a complete change in behaviot upon crossing the boundary between stable and
unstable solutions. One says that at Ra = Ra , the system undergoes a bifurcation. More
"generally, whenever the solution to an equation or system of equations changes
qualitatively at a fixed value - called a critical value - of a parameter, this is

called a bifurcation. From a bifurcation point emerge several (tfo or more) solution
branches, either stable or unstable [5].
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tO t.1 t,2

Fi.8 - First steps of the construction
of a chaotic attractor in the Poincar6
plrne with the corresponding trinsverse
structures.

c-O initial rectangle
t-l horse shoe
t-2 double hairpin

Compare the transverse structurec with
that of a Cantor set (fig.12a).

©

Fi.- Diagrams of simple bifurcations
a) pitchfork (or normal or supercritical) bifurcation
b) subcritical (or inverse) bifurcation
c) saddle-node bifurcation.

D,

T J

Fig.1- a) Instability of a limit

cycle. A departure _8X is transformed,

after a turn into 6 ;Xwhere M is the
Floquet natrix.

b) The 3 generic crossing of
ths unit circle.

a
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Let us illustrate some different bifurcations through their bifurcation
diagrams, •being a (real) variable cha'ýacteristic of the bifurcation (for example the
velocity in the R.B. case) and 1A the bifurcation parameter (for example the Rayleigh
number). In figure 9a one can see a pitchtork (or normal or supercritical) bifurcation
the corresponding equation is

S~dt

for p < 0 the only stable solution is X 0; for p > 0 this solution becomes unstable

and the two stable branches are X= ± JA. Note that the nonlinear term -X limits the
exponential growing due to the linear term.

One can see on figure 9b the subcritical bifurcation (or inverse bifurcation).
The equation is 4X

-X J X+ V~dt

Contrary to the case of tt" normal bifurcation the nonlinear term + W
3 

hasAlso a
destabilizing effect on the solution.

The figire 9c represents a saddle-node bifurcation whose equation is

__ - w _ ; for p > 0 there exists 2 branches, one stable and one uastable. For JA < 0

there exists ,. zolution, stable or unstable

II.4. Ways in which chaos appears, main routes-to chaos

What are the routes that lead a dynamical system from regular behavior to chaos ?
To answer this questzon, we must list the different possible transitions between
attractors, a task as indispensable as identifying the attractors [7].

First,, we mutt say that, very generally, the first :,tep after the steady regime
consists in a periodic behavior. For example, in a small oox, the increase o: Ra number
produces a transition fror the steady regime to a periodic one. X nature:. step towards
addressing the que-tion posed above is to examine the conditions under whi,::i a periodic
regime loses its stability.

Consider a flow in -a rn-dimensional p1ase space which has a periodic solution of

period Tm(t÷- T X(t).

To find out if this solution is stable oz not, it suffices to look at what

happens to a small initial displacement 8X away from the solution. Linearizing the flow

about the periodic trajectory, we find that an initial condition X + SM (8X
0

infinitesival) is mapped at the end of the period T into + Ms, where M is an m x m
matrix called the Floquet matrix.

The problem of the linear stability of a periodic solution has been reduced in
this way to the study of the eigenvalues of H. We first note that this matrix always has

an eigenvalue equal to one; this corresponds to a displacement 5X along the trajectoty.
We must study what happens in the directions perpendicular to the trajectory, as shown
in the diagram of figure 10a. We see intuitively that, while the eigenvalues of M depend

on the form of the limit cycle, they are independent of the reference point X chosen

along it. Since over one period F + rX is mapped into M+ a SX, the solution is linearly
stable if all of the eigenvalues of M are located inside the unit circle D of the

complex plane. Then, all the components of the vector 8X which are perpendicular to the
limit cycle are reduced with each period. On the other hand, if (at least) one of the

eigenvalues o: P is outside of D, SX irows continually in at least one direction: the
trajectory moves further and further away from the limit cycls, which is therefore
unstable.

By continuous variation of a parameter . , the periodic solution gradually
changes; the same is true of the matrix H and of its eigenvalues. Each of the

d i 1 I i •1I I I I •1 I I l " " _ ' . .. . .I- ! I
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eigenvalues can be represented in the complex plane by a curve parametrized by P. Loss
of stability of the periodic solution, accompanied by a bifurcation, occurs when one of
these curves exitS from the unit circle as j& is varied. There exist three generic ways
in which to cross the unit circle D, as indicated on figure 10b: at (+1), at (-l) and
at two complex conjugate eigenvalues (a ± i13). Aside from the loss of stability, each of
these crossing types has different consequences on the later behavior of the system,
which depend on the nonlinearities and are closely related to the bifurcations involved.

When (+I) is crossed, a saddle-node bifurcation occurs. The periodic solution
does not merely become unstable: it disappears entirely. In a parameter region slightly
above the bifurcation threshold, the system enters a regime called Type I intermittency.
it is characterized by phases of regular, almost periodic behavior (laminar phases),
interrupted from time to time by phases of apparently anarchical behavior (turbulent
bursts).

If the circle is traversed at (-1), the bifurcation is called subharmonic, and
may be either supercritical (normal) or subcritical (inverse). In the case of a
supercritical subharmonic bifurcation, a new stable periodic solution, whose period is
twice as long, replaces the solution which has become unstable. Period-.cibling is
repeated for each of the periodic solutions obtained, resultinq in an infinite sequence
of bifurcations called a subharmonic cascade and ending in chaos. A subcritical
bifurcation, on the other hand, leads to Type I intermittency, which qualitatively
resembles Type I intermittency: long phases of almost periodic behavior are interrupted
from time to time by chaotic bursts. However, Type J is characterized by progressive
increase of the amplitude of the subharmonic during the almost periodic phase, the
reason being that, here, nonlinear effects amplify the subharmonic instability of the
limit cycle. The amplitude increases with each successive oscillation: when it exceeds a
critical value, the laminar phase is interrupted.

Finally, a third mode of instability takes place when two complex conjugate
eigenvalues (a ± zj) simultaneously cross the unit circle: this is called a Hopf
bifurcation. If the Hopf bifurcation is supercritical, it leads to a stable attractor,
close to the limit cycle which is now unstable (but which still exists). This attractor
is a torus T I on the surface of which is inscribed the new solution corresponding to a
quasiperiodic regime. A second instability can then generate a transition from this
quasiperiodic regime to chaos. If the bifurcation is subcritical, we can encounter
another phenomenon, called Type J1 interni'ttency.

Some of this routes to chaos will be illustrated later in more details.

IV - SOME EXPERIMENTAL ILLUSTRATIONS

IV.l. The method

In the case of Rayleigh-Benard convection at room temperature and with high
Prandtl number fluid (silicone oil) many optical method can be used. The advantage is
their non-perturbative character; furthermore, they are local or seni-local with large
facility to change the mea'surement point. Finally, one can easily visualize the
convective arrangement and, then, have a permanent overlook on the structure. Note that,
here, we are only concerned with the "small box": a rectangular plexiglass frame
(vertical boundaries) is inserted between two massive copper plates, the temperature of
which is regulated. Horizontal or nearly horizontal ligh beams can be sent through the
layer. In such an arrangement, laser Doppler anemometry seems to be the best technique
for determining a fundamental variable of the convection, namely the velocity. Though
used whenever possible, this type of measurement is necessarily contamined by
instrumental noise; this noise represents a serious drawback as far as the dynamical
properties are concerned. On the contrary, one can use another optical method with a
much higher signal-t-noise ratio. The method uses the fact that a temperature gradient
in the fluid causes a gradient in the ind-x of refraction. One then measures deflection
of a light ray due to the nonuniformity of the refraction index [5][B]. This easily
implemented technique provides a signal corresponding to the mean temperture gradient
traversed by the light ray over its entire path through the fluid. It is t...:refore only

a semi-local measure, not related in a simple way to the variable 0, but is nonetheless
used successfully. Use of the light deflection technique is limited to transparent
fluids of sufficiently high density, since it is only in such fluids that appreciable
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iB

Fiol - Scheme of the experimental arrangement.
B incoming parallel beam
C Rayleigh-Benard cell (small box)
L converging lens
K knife edge (in the focal plane of L)
S screen (real image of C by L)
P photcliode

Pa.12a) -First steps in the
construction of the Cantor set.

Fi.12 - Principle of the determination
of the correlation dimension.

b) one-dimensional object
c) surface
d) fractal object
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gradients of temperature, and thus of the index of refraction, can exist.

In practice, one make a Foucault (or Schlieren) image of the convecting cell
(knife-edge method). The intensity on this image is rougrly proportional to the

horizontal or vertical thermal gradient, depending on the orientation of the knife edge.
By setting a photodiode on a suitable location of the image, one obtains a photocurrent
roughly proportional to the thermal gradient (see figure 11). From the time dependence

of this photocurrent, one gets relevant informations about the dynamical regime of the
convection such as Fourier spectra, a powerful method of data analysis of any dynamical
regime.

IV.2. Reconstruction of thepha!sesacpe

Contrary to the case of theoretical dynamical systems for which we know the
variables, we do not know the variables in a convection experiment (as in any real
system). Most often one measures the variation of only one (or two) property, related in

a simple or complicated way to one cr several of the independent variables of the
system. In such conditions how it is possible to have access to the attractors of the
system i.e. how it is possible to reconstruct a relevant phase space ?

In the case of a periodic regime, if X(t) is the periodic signal 1rom the
photodiode, one can obviously construct the limit cycle - the attractor of this regime --dX( t)
just by plotting -- as a function of X(t) (i.e. the analog of plotting the velocity

dt
dX
- as a function of the position X in the case of a pendulum). Equivalently, one candt
consider that two variables of the system in a periodic regime are X(t) and X(t+T), r

being a suitable delay. F. Takens has shown that this last procedure can be generalized
to phase spaces of higher dimension. Starting from observations sf only the signal Xtt),
it should be possible to reconstruct the topology of the attractor, by taking as the

phase space X(t), X(t+T), X(t+2T) .... In other words, we can consider the signal X(t)
to be independent of the same signal at a later time X(t+T) where T is an arbitrary
constant called the delay. This does not mean that the attractor obtained in the new
space is identical to that in the original phase spacc, but meraly that the new

representation of the attractor retains the same topological properties, which may
suffice for studying its essential characteristics.

IV.3 M::uri~ ofthedimension_ of _the attractors

Let us recall that a limit cycle being a curve has a dimension 1, a torus T , a
surface, has a dimension 2; on the other hand, strange attractors are fractals with a
non integer dimension.

Without entering into the details, let us describe a practical method which
allows a measurement of a fractal dimension (called "correlation dimension") of a set of

points [9].

First, to illustrate simply this method, let us define a simple fractal set the
Cantor set (Remember that we have met this kind of set in the transverse structure of a
strange attractor). This set is obtained by an iterative process from the unit segment.
First, the central third of this segnent is removed. Then, the central third of each of
the two remaining segments is removed. The operation is repeated indefinitely, as
illustrated in Figure 12a. In this way we obtain an infinite set of disconnected points
whose dimension is, then, between 0 and 1 (a single point has a dimension zero and a

segment has a dimension 1). One can calculate easily the fractal (Hausdorff) dimension:
D = 0.63...

Returning to the correlation dimension, let us illustrate this approach with

examples from plane geometry. Consider a set of points on the plane and let N(r) be the
number of points of the set located inside a circle of radius r. The correlation
dimension j, ie determined from the variation of N(r) with r . For a discrete set of
points uniformly distributed on a curve (Qimension one), we have, for r sufficiently
small:

N(r) r

1_m



5-17

Log tJ(r)
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Fil_3 - Loq-log plot of N(r) for white
noise. Note that the slope (which
measures the exponent Y) continues to
grow as the dimension p of the
representetion space is increased.

LogN(r)
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Fi.4- k.vasurement of the dimension v in the case o• a deterministic
turbulence in R.B. convection

a) characteristics logN(r) , logr
b) -voriation of the exponent v- as a function of= the dimension p. We

deduce v from the slopes of the characteristics prescnted in FigIrea 13 and
14a. For w.hite noise, v' increases linearly with p. In contrast we see a
distinct saturation of ' when the data is taken from turbulent R.B.
Convection.
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that is, Ntr) r' with v = 1 (see figure 12b). If, on the other hand, the points are

uniformly distributed on a surface (dimension two; see figure 12c):

N(r) - r', r '= 2.

we can now consider general objects of arbitrary dimension, such as the Cantor set

described above (see figure 12d). The number of point.. M(r) located inside a circle will

grow, on the average, more slowly than the adit's r. Setting N(r) - r', it can be
calculated that v Z 0.63, which is equal the flausdorff dimension mentioned oreviously.

The method is generalized to p-dimensional spaces by defining N(r) to be the
number of points contained in a p-dimensional hypersphere of radius r. From this method
one can calculate the dimension ort an attractor. Starting from a time series X(t),
through the method of time delays we can reconstruct a trajectory in a p-dimensional
phase space by taking as coordinates X(t), Xt t+1-), X(t+2r) ... X(t+(p-1) -r) where T is an
appropriate delay time. In practice the time t is discretized, so that we obtain a
series of p-dimensional vectors representing the phase portrait of the dynamical system.

Then, the method described above is applied counting up the points ir hyperspheres
centered on many (eventually on every) points of the attractor. If a law such as
N(r) - r' do exist.' then ' is the dimension of the attractor.

Starting from the discrete values X(t,) obtained experimentally, we reconstruct
the trajectory in a p -dimensional rpace, as described above, for increasing integer
values of p:

p = 2,3,4,5,

For eachi value of p, we calculate M(r) and determine the slope of the function f defined
by logN(r) = f(log r), arriving at an expnert P . For a periodic regime, whose phase
portrait is a lirit cycle, the dependence of N(r) on r is strictly linear (up to size

effects). Contrest this with the case of white noise. The signal can be considered to be
a superposition of an infinite number of indeperdent oscillatory modes (or system with a
very large number of degrees of freedom). Such a regime can therefore he described by an

attractor T ', with n very large. The tra3ectories will densely cover any phase space of
dimension:

p<n

Indeed, Figt'e 13 shows that the characteristic functions N(r) obtained from a white

noise have s.opes on a log-log plot which continue to increase with p: we find v - p.
This result Lan be extended: as long as the calculated value of P is equal to p (or
continues to grow with p ), we know that the dimension of the space used for the
calculation is smaller than (or comparable to) that of the corresponding attractor. If,
on the other hand, the dimension Y calculated for a chaotic regime becomes independent
of p, then the chaos is deterministic ana the corresponding attractor strange.

As an illustration, one can consider the results obtained from an experimental
time series corresponding to a chaotic regime in Rayleigh-Benard convection in confined

geometry [10]. Figure 14a shows that the slopes of the functions 1(r) on a log-log plot
are reasonably well-defined and independent of the dimension p of the phase space as
soor. as p exceeds 3. The saturation of P as p is increased is better illustrated by

Figure 14b, and contrasted with the linear dependence of P on p for white noise tor
random signal). This type of data analysis demonstrates the deterministic nature of the
chaotic behavior in this regime and, in additijn, determines a lower bound on the number
of degrees of freedom excited [11]. For many other illustrations about experimental
strange attractors obtained in the same experiment and their fractal dimension, see the
Lecture of M. Dubois. See also the lecture of S. Ciliberto.

IV.4.._Type I intermittencies

We have seen in section 111.4 that type I intermittencies correspond to a

destabilization of a limit cycle when the unit circle is traversed at +1. In the
simplest case, we can illustrate his destabilization in the Poincar6 plane (see figure

15a). If the limit cycle is represented by its Poincar6 section 0, a small departure
from this cycle will be multiplied, at each period, by a real number slightly larger
than 1, and the successive intersections will be 1.2,3 etc...

As ment, ned previously, many dynamical systems can be described by -e

.&,' .
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FIGURE 15 TYPE I INTERMITTENCIFS Ak÷

\ , ,Ak

15a) successive intersections in the 156) Mapping Ak.I= Ak + e + a A 2 for

Poincar6 plane; 0 corresponds to the f < 0. There exists one
(unstable) limit cycle, stable fixed point and one unstable

f.xed point.

0

$~Ak

15c) apping A, = Ak + e + a A 
2  for

e > 0. The fixed points have desappeared __L

and a channel is now open. After the
crossing of the channel, the point 1

5
ds long and short laminar phase with a

wanders in the phase space and is scheme of the distrik .tion of the

reinjected somewhere in the channel, lengths of laminar phases.

Ra 270 Rac

Ra 3 0 0 Rac

15e) Behavior of the velocity near the
threshold of type I intermittency in
R.O. convection.

(3) Periodic regime for Ra < Ra,,
where Ra = 295 Ra is the threshold for
onset of intermittency.

b) Intermittent regime for Ra > Ra,.
Notice the long sequences (of unequal

length) of barely perturbed oscillations
(passage through the channel)
interrupted by sudden brief events.

'I"
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iteretion, of a one-dimensional mapping.

The simplest iteration describing type I intermittencies is

Ak - A,, + f + a A2
k.1

where c is the control parameter measuring the departure from the threshold of
intermittencies. As one can see on figure 15b, for c < 0 there exist two fixed points*,
one stable, the other one unstable. For f = 0 they merge into one another: as seen
previously, this corresponds to a saddle-node bifurcation. Both fixed points desappear
for e > 0. One can notice that for e positive but small, a narrow channel is open

between the parabola and the bissector. Under that condition, the representative point
travels through the channel very slowly: this corresponds to a dynamics which slowly
evolves. In particular, the representative point spends a long time in the vecinity of
the "ghost" of the fixed point. Translated in the full phase space, this means that the
trajectory remains a certain time near the (desappeared) limit cycle. In other words,
for a while the behavior is nearly periodic: one says that the system is in a laminar
sequence. After that, the representative point escapes out of the mapping and wonders in
the phase space: this corresponds to a "burst" of turbulence. Then, there is a
reinjection somewhere in the channel and a new crossing begins. The reinjection being
made at random, the iterations can start anywhere in the channel; then the duration of
the laminar phase are distributed at random. The distribution of the length of the
laminar phases can be calculated. One can see in figure 15d that the general shape of
this distribution is qualitatively characterized by a value of the most represented T
not too far from the maximum duration. On the other hand., T is expected to vary like

[(12].

This kind of intermittencies has been observed in Rayleigh-Benard convection in
confined geometry. The convective structure consisted of 2 rolls in the longer size
(L = 2d) and 1 roll in the other one (L = 1.2d) (Prandtl number of the oil = 130) [13].
The dynamics of the regime was studied through velocity measurements (laser doppler
velocimetry). At Ra = 250 Ra., the regime is monoperiodic; the thermal oscillator
responsible for this regime is a thermal dropplet. At Ra = 290 Ra. a qualitatively
different regime sets in: the oscillations are still present, but, from time to time,
they are interrupted by a short burst (see figure 15e). As expected, near the threshold

of intermittencies the lengt.k of the laminar sequences is long and the bursts are rare;
they become more and more frequent when Ra is increased. The distribution of the
duration of the lami.iar sequences wa,. found in qualitative agreement with what
theoretically expected.

IV.5. Type I intermittencies

We know from section 111.4 that this kind of intermittencies is associated with
the destahilization of a limit cycle when the unit circle is traversed at -1 through a
subcritical (or inverse) bifurcation.

A departure from the limit cycle is thus multiplied at each period by a negative

real number,, the absolute value of which is sligbly larger than one. In the Poincar6
plane, this means that the representative point leaves the ancient fixed point 0,
,scillating, on the axis, from positive to negative values: the system returns in
(almost) the same state each two periods (see figure 16a). This is the phenomenon of
"period doubling": basically, this kind of instability produces a subharmonic of
increasing amplitude (in a subcritical bifurcation the non linear term does not
saturates the exponential growth). This loss of stability of a limit cycle through the
growing of the subharmonic mode is the basic mechanism of type I intermittencies M5].

* Note that the term "fixed point" has to be understood in the context of a Poincar6
section: in the full phase space it corresponds to a limit cycle.

-. - - -
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' k+

16a) Successive intersections in the
Poincar6 plane; 0 corresponds to the
(unstable) limit cycle.

P(L) 0

2 Ak

16c) Scheme of the distribution of the kSb) Mapping Ak 2 = (l+
2
t)AA + a k + bA

lengths of the laminar periods, for b' > 0 d E>O0

16d) Time dependence of the horizontal temperature ;radient near the
threshold of type I intermittency in R.B. convection. This R.B. experiment
is carried out with a ratio Ra/Ra = 416.5. Note the continuous growth and
then the abrupt increase of the amplitu4e of the subharmonic, and the
concomitant decrease of the amplitude of the t'ndamental.

FIGURE 16:TYPE In INTERMITTENCIES

Ie
I|
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The mapping (or iterated map) which describes type I intermittencies is

Ak,. A,(14e) + aA: + bAI +...

It is natural, from what we have seen above to consider the second iterate Ak.2
as a function of A,.

Neglecting the higher order terms:

A, = (1+2e) Ak + a'A 2 + b'A 2 +
.2 k

with b, = 2(a 2+ b) and a' < b'. b* < 0 would correspond to a normal bifurcation, a case
not considered in this section. On the contrary, b' > 0 describes the subcritical case
which gives rise to type I intermittencies. Let us consider in figure 16b, the graph of

Ak,2 = f(A,). For e > 0, the unique fixed point (0,0) is unstable (remember that it
represents the unstable limit cycle). From the (0,0) point, the upper branch of this
cubic curve corresponds to the growth of the subharmonic and the lower branch represents
the correlative decrease of the fundamental. When the amplitude of the subharmonic

attains a certain value, a burst appears shattering the signal's regularity. Immediately
afterwards, regular behavior reappears due to a reinjection somewherc in the channel. As
in the case of type I intermittencies, this reinjection is made anywhere in the channel
with equal probability. Then, the amplitude for the subharmonic at the begining of a new
laminar sequence is at random. This initial amplitude determines the length of the

laminar phase until the next turbulent burst. One can calculate the distribution of the
lengths of the laminar phase. By contrast with the case of type I intermittencles, this
distribution is characterized by a long tail towards long durations (figure 16c). This

important difference can be understood from the graphs of the two kinds of
intermittencies. In type I intermittencies a reinjection at the begining of the channel
corresponds to the maximum of the duration of the laminar phase. In type I

intermittencies, the smaller the initial amplitude of the subharmonic, the longer the
laminar phase lasts. Then, by opposition with the case of type I intermittencies, there
is not a strict limit for the maximum of the length of a laminar phase: in-principle, a
reinjection exactly at the point (0,0) would produce a laminar period of infinite
length.

Tjpe I intermittencies have been observed in Rayleigh-Benard convection in the

same experimental cell as for type I intermittencies. The differences consisted in the
Prandtl number of the oil, (36 instead of 130) and the kind of convective structure (3

rolls instead of 2 rolls). Under that conditions the following regimes were observed:

Ra
33: < - < 377 steady regime

Ra

Ra
377 < - < 416.7 monoperiodic regime

Ra

Ra
- > 416.7 growing of
Ra

the subharmonic mode with appearance of bursts. This last behavior is well illustrated

in figure 16d which represents the variation of semi local thermal gradients (detected
through optical techniques). One can note the growing of the subharmonic, the decrease

of the fundamental and, at a certti:n level of subharmonic, the appearance of a short
burst, followed by a relaminarization etc... One can clearly check that, as expected,
the smaller the initial amplitude of che subharmonic, the longer the laminar phase
lasts.

Figure 16e shows in more details now one can construct, from experimental data,

Sa return map - here, a second return map X,,= f(IX, - in order to compare with the
mapping described above; one can remark a very good agreement between theory and

experiment.

Finally, figure 16f shows a distribulion oi the lengths of the laminar phases;
as expected, there is a broad distributicn of times with a pronounced tail towards long

durations.
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FIGURE 16.`TYPE M INNTRMITI'ENCIE (CONTINUED)

it

Ra 420.3 Rac

EPSLON 0.11

16e) a) Sample of a time signal from the same regire as Figure 16d. Expanding
the time scale provides a better illustrat3on of the growth of the
subharmonic and the correlated decay of the findamental. To the left are
defined the quantities Ik used in graphing the second return map.

b) Graph of the second return map 
1

k, = f(Ik). Two different symbols
are used to construct this graph from the experimental results: one of them
(a) corresponds to the subharmonic (increasing amplitudes) and the other
Wx) to the fundamental (decreasing amplitudes). The continuous curve is the

graph of the function:
f(1) = (1 + 2e)I + a." + b!

a and b constants with a < b) predicted by theory to be the functional
form of the second return map near the intermittency threshold. We note the
excellent agreement with experimental results obtained by adjusting the
value of the parameter e (e 0.11).

fromT m~ a' am

16f) Histogram of the lengths of laminar phases. The lengths observed vary

from eighteen minutes to more than two hours. The most significant feature
is the lonj tail for T large, characteristic of type I intermittency.

I-.
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IV.6. The subharmonic cascade [15][16][17]

j We have studied in section 11.3 the iteration of a quadratic mapping of the
interval fa()

=4 1 1-

For p - 0.7, we pointed out the existence of a stable fixed point at X' (see fig.5).
(Remember, once again, that a stable fixed point in a mapping corresponds to a stable
limit cycle in the real phase space). However, thi& situation for which we find a single
stable fixed point is far to be the unique possibility. indeed, the results depend o.
the value of p which plays the role of a control parameter. For example, let us consider
the situation corresponding to 1 = 0.8, see fig.17.

Now the fixed point X* is unstable, for the slope of the tangent at this point
is greater than one in absolute value. The graphical construction shows that the mapping
has two special points ,T and such that:

f (X) and X =

In other words, the iteration alternates between one point and the other, starting from
one of these points, we must iterate twice to return to it. The two points constitute an
attractor of period two, also called a 2-cycle. Given that:

v= f( t) = f(f( X))

v= f(fx) = t(f( X))

these two points - which are not fixed points of f - are fixed points of the function:

g({ ) = f(f(X I ) = f 
2 
(X )

as can be verified on Figure 18. More detailed study shows that we pass continuously
from the situation of a stable fixed point to that of an attractor of period two by
increasing the value of IA. Transition occurs at the threshold value )A = 0.75. At this
value, the stable fixed point of f becomes unstable, and, correspondingly, there appear
two stable fixed points of f 2. An attractor of period two takes the place of the
attractor of period one: the period has doubled. This is exactly the situation expected
when the unit circle is traversed at -1 and when the associated bifurcation is normal.

Let us return to the iteration cf section JV.5

A,.2 = (1+2f) Ak + a- A 2 + b" A

but, now, with b' < 0 (normal bifurcation). One can see in figure 19 the graph of this
iteration for e > 0. Clearly, the point 0 is unstable and there are two stable fixed
points corresponding to the attractor of period two.

Let us now return to the quadratic map. What happens when we continue to
increase ; ? The graphs of f and f ý gradually change, in such a way that the fixed
points of f 7 also end up losing their stability. Another simple graphical construction,
helps to foretell and to explain the sequence of events. Consider the square around the
fixed point w in Figure 18. Inside the square, we observe a locally parabolic curve
containing a stable fixed point - i.e. a situation just like that of Figure 5. Therefore
when the fixed point becomes unstable by deformation of the curve, we can expect the
san- phenomenon as before: the fixed point of g will be replaced by two points which
will bt the fixed points of the function:

h(.) - g(g(.V) f

This conclusion applies equally to tae fixed points X and : both become
unstable for a value = 0.862...

For p > p g has no more staole fixed point but, h, has now four fixed points.
Starting from any one of these points, four iterations are required to return to it: we
now have a 4-cycle. Again, the period has doubled via a subbarmonic bifurcation.

By continuing to increase 1A, the same phenomenon will be repeated ad infinitum.
We will see a cascade of bifurcation, each accompanied by the period doubling associated

___ -r7T~-
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f(x) //

-- - -- --.

///

X

FIG .5

Fig.17 - Graph of f(.) = 2,ý = 4 i X (1-2;) for • 0.8 . Both fixed
points of f are unstable at this value of L. Any initial condition in ]0,,
I[ has as its asymptotic limit the pair of points a' and X visited in
turn.

2,2+

Fi18 - Graph of the mapping g(.%)

f~f(C.) = f (.) fr j = 0.8. This
mapping has four fixed points, of which F*l1 - Mapping A,,. = (I+2c)Ak +
two. X and I . are stable. f maps

each one onto the other. The two squares asA 2k + VA 3 for b' < 0.
drawn around the fixed points serve to
emphasize the structural similarity with
the graph of f(.1 in Figure 5.
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with a subharmonic instability. As p is increased we observe a succession of attractors
of period 24, or 2t -cycles, C an integer varying between 0 (for 1 4 0.75) up till
infinity. The values of 1 at which the bifurcation in the cascade occur have a
remarkable property: they form an increasing series converging rapidly towards an
accumulation point p., whose value can only be obtained numerically:

SA= 0.892486418...

The following teble gives the values of 1 corresponding to the first few bifurcations of
the subharmonic cascade.

Periodicity of the attractor u value at the bifurcation point

1.20 = 1

1.21 = 2 % = 0.75

1.2' = 4 P= 0.86237...

1.2* = 8 p = 0.88602...

1.24 = 16 p = 0.89218...

1.2' = c= 0.892486418...

Examination of the values of ; collected above reveals that the convergence towards the
accumulation point obeys a simple and rigorous law: the difference between values of p
associated with two consecutive bifurcations is reduced each time by an almost constant
factor:

lira -m

An essential result, which cannot be overemphasised, is that the scale reduction factor
8 is anuniversal constant, independent of the details of the function f considered:

& = 4.6692016091029909...

More precisely, in iterating any mapping which has a quadrdtic extremum we always find
the same period-doubling cascade, with the same scaling laws as above. The theory is
indeed extremely general, which justifies in retrospect the attention we have devoted to
this narticular function f. What is remarkable is that quantitative predictions can be
made provided that a simple qualitative condition is qatisfied.

A graph of the X values of the points on each attractor, as a function of ;.,

aids in visualizing the subharmonic cascade just described (see Figure 20). The first
bifurcations, each doubling the number of points of the attractor, appear very clearly.
But the bifurcations rapidly become so close to one another that they can no longer be
distinguished if 1 is represented on a linear scale. On Figure 20, the attractor of

period eight is the last that can be discerned without difficulty. What happens beyond
the accumulation point ?

Numerical simulations shows that traversal of the value pm marks the beginning
of a very complex domain. On the graph of Figure 20 different zones appear, some lighter

and others more shaded. Detailed analysis reveals th.at in this region, periodic
attractors alternate with chaos.

In the latter case, iteration of f yields a sequence of values of I that:

- never repeat themselves
- depend on the initial condition X.

In particular, two arbitrarily close initial conditions give to two sequences of

iterates - or trajectories - that always eventually diverge from one another (S.I.C.).

Take in mind that P. is the threshold for chaos in the period doubling scenario. .

Tak_____________Is th
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0.5 0.6 0.7 0.S O 09
PI P2 P3

Fic.20- Asymptotic iterates of the mapping f(M for u E [0.5,1]. As a
function of the pazameter I , we have plotted the value or values of
obtained by iteration of f(,%) as k tends to infinity. From left to right we
see:
- a sequence of periodic attractors, separated by subharmonic bifurcations
ea:h of which doubles the number of points on the attractor, as well as its
p riod.
- beyond jC, a region where aperiodic and periodic attractors alternate.

3 47 JII~~~IMMMI

3655

365 "iMI'U'UM 'IN
EqI - Cascade of period doubling in Fig.22 - Fourier spectra corresponding
R.B. convection in mercury. The changing to data of figure 21. Starting from •/2
shape of the signal (temperature of the (in A) we see appear the subharmonics
fluid at one point as a function of f /4 (in B ), f/8 (in C) and f.116 (in
time) clearly shows the period-doubling I s w thein C) and cs (

poes thttespaeathcorl D), as well as their odd harmonics.process that takes place as the control From A. Libcbaber, S. Fauve, C. Laroche.
parameter Ra/Rea is increased. The line
segments indicate the iength of one
period, defined by a basic pattern which
is repeated indefinitely.
From A. Libchaber, S. Fauve, C. Laroche.

I __ ___ ____ ___ ___ ____ ___ ____ __- ___
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The route to turbulence via subharmonic cascade (or cascade of period doubling)
has been very well illustrated in Rayleigh-Benard convection. The most precise
experiments have been done with liquid mercury stabilized against some parasitic

instabilities with a magnetic field [18][19]. Needless to say that the experimental

techniques are completely different frLoa that deicribeL previously.

Larger aspects ratios than for the case of oil are used (L = 4d or 6d) and two
purposes are served in placing a magnetic field. First, given the high electrical
conductivity c-f mercury, the convection rolls have a strong tendency to align themselves

in the direction parallel to the magnetic field. This fixes the spatial order and

prevents the creation of defects as Ra is increased. In addition, the magnetic field
damps certain modes causing oscillation of the rolls; it intensifies dissipation, which

favours dynamical behaviors understandable in tErms of one dimensional mappings.

The mercury is placed between two thick copper plates. The convective motions
are measured using bolometers, since optical methods cannot be uted in an opaque medium.
In a first phase of the experiment, one fixes the magretic field strength at zero and
increase the temperature difference until the onset of convection at a value Ra. of the
Rayleigh number. Continuing to increase Ra, one notices at a value close to 2Ras, the
inset of a new instability. The signal recorded by the bolometer begins to oscillate in
time with a frequency if. This oscillary instability can be attributed to a wave
propagating along the roll axes. As Ra is further increased, the periodic regime in turn
becomes unstable, and there appears in the power spectrum of the signal a second
frequency f. close to, but nonetheless distinct from f /2. For a slightly lurger value
of Ra, the frequencies of the two oscillators lock when the condition of subharmonic

resonance f,= f,/2 is satisfied.

This frequency locking marks the beginning of the second phase of the
experiment. A constant and uniform magnetic field is applied, whose intensity is such

that the amplitudes of the two oscillators become comparable. By gradually increasing
the Rayleigh number, one notices a succession of well-defined values of Ra at which one

periodic regime bifurcates to another of twice the period. Figure 21 shows recordings

from several consecutive periodic regimes. The emergence in the Fourier spectrum of the
sutharmonics f1/4, then f 1/8, f 1 /160, the signature of period doubling (see lig.22). From
these results, we can attempt to evaluate the convergence ratio of the successive

bifurcations. We find a value of 4.4, extremely clo.,e to the universal asyoptotic limit
4.669... predicted by theory. Chaos (or turbulence) appears for Ra number immediately

above that corresponding to the emergence of if/16.

This Rayleigh-Banard convection experiment confirms the existence of the route

to turbulence via the subharmonic cascade. Let us also mention that thermoconvection in
other fluids (liquid helium, water, oil) also gives rise to a period-doubling cascade,

as well as othereynamical systems [201.

IV.7. The quasiperiodicit_

The route to chaos via quasiperiodicity is developed in many details

lectures given by M.Dubois. Let us just describe in a few words the loss of stability of
the limit cycle giving rise to quasiperiodicity by comparison with what happens in the
case of intermittencies or period doublin.; cascade. In these last two caseE, the unit

circle is traversed either at -1 or at -1. 'his means that the eigenvalues wl-ase modulus

becomes larger than 1 is real in both cases. Then, in the P":..c,.td plane, (see
figure 23), the successive vectors representing the increasing depa.ture from the point
0 - section of the limit cycle - are on a straight line. on the c,,ntrary, when the unit
circle iý traversed at two complex conjugate value (e ± io1 the e.genvai!e whose -odulus

becomes larger than 1 is complex. Then, the successive vectors are amplified and rotate L

in the Poincar6 plane. If this loss of stability is associated with a normal

bifurcation, the non linear terms saturate th- growth of the Xodulus and, after a short
transient the points of the Poincar6 section rotate on A circle (see figure 23). That 4
is to say, the corresponding attractor is no', a Torus TO whose Pcincar6 section is a
circle (see figure 4- ). Returning to the dynamics itself, the periodic regime has been
repi.,ed by a quasiperiodic regi=e. The corresponding transition is called a Hopf
Lifurcation. Different kind of instabilities may then occur givinq rise to uhaos via

what is called, generically. -the route (or scenario) to chaos via quasiperiodicity-.
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p.23 - Successive intersections in the
Poincar6 plane when the unit circle is
traversed:
a) at +1
b at -1
c) at o -f ij
d) Hopf bifurcation; the point 0 is the
Poincar6 section of the (unstable) limit
cycle and the points P, belong to the
Poincar6 section of the Torus T =

I
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Transition to turbulence via spatio-temporal intermittency

Paul Manneville

Service de Physique du Solide et de Rgsonance Magn6tique
CEA Saclay

91191 Gif sur Yvette Cedex, France

1 General setting

As discussed in the !ectures given by P. Berg6 and M. Dubois, our understanding of the process of
transition to turbulence has made a great advance thanks to the irruption of deep mathematical
concr'•ts from dissipative dynamical systems theory.

However it shot-ld be stressed immediately that, while this approach is fully adapted to confined
s, stems where the snatial structure remains frozen, the situation of weakly confined systems is
aiuch lees settled. Indeed, in continuous media where instabilities can develop, the number of

. racting mc ',es is linked first of all to the physical processes involved but, more importantly, to
-onfinement effects ;,easured by aspect ratios. In confined systems (small aspect ratio limit), eigen-
modes associated with instability mechanisms have markedly different critical values and spatial
structures; one can easily restrict the number of effective excited modes to a small value. On the
other hand when the geor-etry allows a large number of equivalent configurations (large aspect
ratio limit), except in a vanishingly small vicinity of the threshold, one cannot avoid that chaos
then gains an irreducible spatial component linked to the specific position/orientation degeneracy.
In this lecture, we shall be interested mainly in some original features of the transition to turbulence
at the limit of very large aspect ratios.

A conceptually simple way to increase the "umber of degrees of freedom consists in coupling
identical dynamical systems and giving a spatial meaning to this coupling. This can be done for
cxample by assuming interactions between systems sitting at near-neighboring nodes of a regular
lattice. The simplest possible such coupled systems seem to be the so called cellular automata
which are discrete-time discrete-space systems with a finite number of accessible states per site. In
spite of their apparent simplicity they can display a particularly rich manifold of behaviors, some
simple, others quite complicated (see 123]). A step beyond the discrete local phase space of cellular
automata is performed in allowing a continuous local phase space. This leads to the level of coupled
map laticesr, a typical governing equation reads:

'= F(X) + D (X,'+, - 2X,* + '

where the Xi's are the local degrees of freedom, i being the (discrete) space variable, t the (discrete)

time, F(X) the local evolution law, and D the coupling constant. The interaction is chosen so as
to look like a discrete approximation to the Laplacian characteristic of a diffusive process.

In principle, there is no difficulty (except practical) to pass from discrete time to continuous
time by performing a nepenuion of a given n-dimensional invertible map to get a flow in a (n + I)-
dimensional phase space, i.e. the reverse of a Poincard section. In orde: to go from coupled lattice
maps to partial differential equations which are the actual concern of turbulence theory we have
thus to perfom nested suspensions, the first one to recover continuous time, and the second one
for continuous space. Needless to say that the theoretical status of this procedure is yet unclear,
especially because the reverse of the reduction to a center manifold [7] or more generally to some
inertial manifold (for an introduction with references to recent work, see [16]) leads not to a
discretized physical space but to an abstract low dimensional phase space.
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Avoiding e thorough discussion of this delicate topic, we shall assume that the information
gained in the study of coupled map lattices will be meaningful also for flows in enclosures (i.e. not
necessarily for open flows also of great interest) with spatial modulations playing the major role in
the process of transition to turbulence (this will be justified by hand-waving arguments later).

The conventional approach to the problem of modulated structures involves so called envelope
equations accounting for long wavelength, slow modulations of cellular structures either steady or
propagating. These envelope equations themselves can be viewed as belonging to the more general
class of reaction-diffusion systems of the form:

atx = G(X) + D v'x

where the second term on the right hand side accounts for the diffusion of chemical species reacting
according to some scheme G. In turn reaction-diffusion equations are a special case Uf even more
general hydrodynamic equations for reacting fluid systems, which close the circle sketched in fig. 1.

aeLet us come back to the evaluation of the number of degrees of freedom. Confinement effects

are illustrated in fig.2 in the standard case of a convection-like instability. The marginal stability

HYDRODYNAMIC
EQUATIONS

REDUCTION TO
CENTER MANIFOLD

Al-
ORDINARY DIFF. EQ. REACTION-DIFFUSION

POINCARE SECTION SYSTEMS

SI

SPATIAL COUPLING ENVELOPE EQUATIONS

CELLULAR AUTOMATA -o COUPLED MAP LATTICES

Figure 1: From hydrodynamic equations to hydrodynamic equations: reduction to center manifold
dynamics, Poincar6 sections and maps, coupled map lattices, and envelope equations.

R

/

kk

k

Figure 2: Effects of confinement on eigen-modes of a convection-like instability; on the left of the

minimum: large aspect ratio limit; on the right small aspect ratio limit.
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curve then looks parabolic in the vicinity of its minimum (k,, R,):

R- R4p c = C'(k---,)

where CO is the (naked) coherence length of the structure (it may be convenient to choose a length
unit such that k, = 1). Using periodic boundary conditions at a distance L in one space dimension
leads to possible wavevectors which are integer multiple of 21r/L. When L increases, the distance
between neighboring allowed wavevectors gets smaller as 11L, the reciprocal of the aspect ratio.
At the same time, the number of easily excited modes in the vicinity of the threshold scales as
An = (L/22r)Vi. At threshold the coherence of the unstable mode is complete; slightly abuve
the threshold, modulations are allowed since more modes can participate. The width of the wave-
packet varies as V, the corresponding coherence length being Co0/'/. Further from the threshold,
the coherence is restricted to a length of the order of CO, which makes the nucleation of structural
defects much easier; a large manifold of imperfect structures or tezturec can then survive in a
metastable way.

Usually, the study of the transition to turbulence involves the control of an applied stress,
here measured by c, while keeping the aspect ratio constant (and small). In order to understand
the specific role of confinement in experiments at large aspect ratio, it may be useful to consider a
situation where stress variatidns are irrelevant while the aspect ratio is the actual control parameter.
Let us have a look at the bifurcation diagram -fig.3- of the Kuramoto-Sivashisky equation:

act+ + +ale + a2.... + 2(a 9)2 = 0

with periodic boundary conditions for 1; small to moderate [8]. Stable steady cellular structures
(corresponding to rolls in a convection experiment) with an increasing number of cells are observed
in narrow L-windows. The transition between solutions with different numbers of cells can be quite
complicated with very long turbulent transients displaying weakly unstable anomalous cellular
structures with defects, etc. up to the large L limit where sustained turbulence prevails. A quite
analogous scenario has been observed in convection at high Prandtl numbers [1].

From what we have just said, it seems that as lohg as we remain with only one parameter
at our disposal, either c or L, we do not get excitingly new things that do not closely fit the
framework of dynamical systems theory (this conclusion would not be changed by the presence of
several physically different unstable modes in competition controlled by a whole set of parameters

h
P T T T

0 L

Figure 3: Bifurcation diagram of the Kuramoto-Sivashinsky equation for L moderatt; stuble cellular
solutions are labelled by their number of cells and windows of persistent turbulence by the letter
"T"; stable stead- states for L large are reached only after very long transients. -

_____ _____ _____ _____ _____ _-_

___________________________________
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Ci, C2 ... , -multiple codimension problem- plus the aspect ratio L). In fact, as soon as the aspect
ratio is sufficiently large, the number of effective degrees of freedom is also large. This is attested
by estimates of the dimesions of attractors [15,1] and of course by the existence of long transients
exploring regions of phase space of increasing complexity. Assuming from the start that the aspect
ratio is large thus leads to accept the idea that even if we are observing a laminar state, this state
can be stable with respect to infinitesimal fluctuations but not globally stable (i.e. with respect to
pertubations of any kind, which can be proven only close to thermodynamic equilibrium) and that
the global structure of the phase space can be sufficiently complicated to afford several attractors,
among which some can be turbulent and possibly also turbulent quasi-attractors (finite life-time
attractors [6]) explaining the presence of long-lived transients.

Considering from a general point of view the cases where the process of transition to turbulence
is well understood in low dimensional dynamical systea'-q we arrive at the conclusion thiat this is
mainly because everything can be made local both in parameter space and in phase space. The
two best known examples are the sub-harmonic route and the Ruelle-Takens scenario. When these
two conditions are not fulfilled, we have to face more or less important difficulties, the signature of
which turns out to be intermittency, often associated with crises. The three types of intermittency
arising from subcritical bifurcations of a limit cycle have been presented in P. Bergd's lecture; for
a recent illustration of intermittency occurring in a crisis context see [2]. In such cases, the main
problem come from the fact that one already needs a detailed knowledge of properties of regions
in phase space which are not close to the attractor which looses its stability (turbulent burst) and
more generally of Vae global structure of phase space (relaminarization problem).

What is implied in the previous two paragraphs is that, in order to get something which ha&,
a chance of going beyond the standard approach in terms of dynamical systems, we must consider
subcriticaliy unstable laminar regimes. If we remember that sufficiently far from the threshold the
coherence length is short enough, we can thus consider the total system as an assembly of weakly
interacting units of individual size O(Qo). Then we can assume that the system can be locally in
one or another of the states that can exist at the global scale as attractors or quasi-attractors. This
determines a partition of the physical space into domains that can fluctuate in size and shape. This
kind of weak turbulence is called spatio.temporal intermittency.

The transition to turbulence via spatio-temporal intermittency presents itself as a scenario spe-
cific to large aspect ratio systems. As a natural frame for this type of transition in which a laminar
regime is progressively contaminated by spatially localized turbulent bursts above some thresh-

old while bursts recede below it, Y. Pomeau 119] has proposed a process introduced in statistical

physics under the name of directed percolation. In the following we shall present (§2) numerical

results obtained on a one-dimensional convection model displaying a transition to turbulence via

spatio-temporal intermittency. Then we shall shift to an analysis of the same phenomenon in cou-

pled lattice m-.ps (§3) and introduce measuring tools from the field of directed percolation (§4) in

order to characterize the critical behavior observed. Concluding remarks and perspectives will be

gathered in §5.

2 A case study: Model-(b)

Here we consider a variant of the Swift-Hohenberg model of convection

=t - (VI +~ k2))t-gu)

The field w accounts for perturbations to the pure conduction regime "w - 0" and can be under-
stood as the either the temperature modulation or the vertical velocity component evaluated in
the horizontal plane at mid-height in the cell. The linear term can be shown to derive from the
Boussniesq equations close to the coavection threshold. It works as a "roll-mill": the growth rate
o of infinitesimal fluctuations with wave-vector k is given by

u= e- (k2 --kI'
-------
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a b

Figure 4: Marginal stability curve (a) and growth rate of infinitesimal perturbations (b) for the
Swift-Hohenberg model

with a maximum for k = k,, positive when c > 0 (fig.4). In the following we shall choose a length
unit such that k, 1 which makes a critical wavelength A, = 27r. At c = 0 modes with Ikl = I
become unstable and for c- slightly larger, a ring of width O(A/) with radius 1 is destabilized.
Nonlinear interactions described by g(w) should then insure the saturation of the unstable modes.
In the original model, g was taken as g(w) = w3; in that case, the bifurcation is supercritical and
one can show that the glc.,eal dynamics derives form a potential. Th3ugh this property does not
forbid the existence of metattable complicated textures in 2-dimensions, the asymptotic temporal
behavior must remain trivial, which is reasonable only for fluids with a large Prandtl number (Pr).
Extensions required to get a more realistic behavior it intermediate or small Pr include both non-
potential contributions to 9(w) and the coupling to large scale secondary flows induced by curvature
effects. Numerical simulations in the 2-dimensional case remain out of our present reach for aspect
ratios of real interest. On the other hand in 1-dimension one can handle systems with hundreds of
rolls either by spectral methods (fast Fourier transform) or by efficient finite difference methods.

In the following we shall consider a model with .9(w) = wOaw, i.e. a nonlinear coupling through
the clasb":,l advection term of Navier-Stokes equations (the Burgers equation in 1-dimension). This
new model, called Model-(b) [171, no longer derives from a potential and, as such, can display a
nontrivial time dependance. The control parameter e is not allowed to become larger than 1 for,
above this li..-"t' value, the (k = 0)-mode is no longer damped from both linear and nonlinear
point of views. At e = 1, one can cast Model-(b) under the form of a Kuramoto-Sivashinsky
equation for the space derivative of 8: 0 = ar. For c < 1, Model-(b) is equivalent to a Kuramoto-
Sivashinsky equation with damping introduced earlier by LaQuey et al. in the context of plasma
instabilitities 114]:

a,, + , = -, - 8szk - a,.z,/
In order to allow the comparison with results quoted in fig.3 for the Kuramoto-Sivasinsky equation
we give here the explicit correspondance: x -- z/V2, t -+ t/4, w -+ 2V2- 10 with q = (1 - C)/4 >
0. Obviously, the term (e - 1)w in Model-(b) breaks the Galilean invariance displayed by the
equivalent Kuramoto-Sivashinsky equation. In order to break also the translational invariance, we
shall supplement the partial differential equation by so called rigid boundary conditions:

w = CW = 0

at the two ends of an interval of length L.
As discussed in the introduction we have now two control paramiters at our disposal and we can

examine the qualitative changes of the bifurcation diagram when L increases. Numerical simulation
have been performed using a finite difference code, second order in space and second order in time
(Crank-Nicolson scheme for the linear part, Adams-Bashford scheme for the nonlinear term). The
algorithm was designed to take advantage of vectorization capabilities of the Cray-lS. The spatio-
temporal resolution has been varied in order to check the reliability of the phenomena observed (up
to 70 points per A, and a time step adapted to the asymptotic dynamics of the solution, steady,
periodic, 4...).
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Figure 5: Qualitative aspect of the bifurcation diagram of Model-(b): e = 1 corresponds to the

Kuramoto-Sivashinsky limit; the length L is given in units of A, (logarithmic scale).

The complete bifurcation diagram has not been studied as thoroughfully as that of the
Kuramoto-Sivashinsky equation with periodic boundary conditions sketched in fig.3. Only the
most important qualitative ieatures have been recognized. From a numerical point of view it is
easier to keep L constant and to vary e. As expected one can distinguish mainly three domains in
L (fig.5).

In the small L domain, with L up to about 4 - 5A,, Model-(b) is typically a confined system,
subjected to crises and bifurcating according to thi classical scenarios. The envelope equation
formalism is hardly applicable. We shall discard this domain and concentrate our interest on the

range L > 10. All the results to be presented from now on have been obtained in collaboration with
H. Chat6 (SPSRM, Saclay) and make a part of his PhD Thesis, some have already been published

13,41, others not.
For L in the range 10 - 50 A,, typical solutions to the Kuramoto-Sivashinsky (c = 1) are

turbulent. On the other hand, the theoretical approach to Model-(b) close to the threshold (c = 0)

is easier since it begins to make sense to try to approximate the solution by modulating a perfect

roll solution. Wavelength selection by nonlinear end-effects turns out to be non-trivial [5,18].
Fig.6 displays steady solutions obtained numerically with L = 11.25 for c = 0.04 close to the
threshold (the coherence length 0o/V/c is large and for e = 0.44 slightly below the threshold of time
dependence. These steady solutions, odd with respect to the middle point, turn out to be unstable
to oscillatory perturbations which involve the 1/2-subharmonic of the basic wavevector selected by
boundary effects, and their harmonics (3/2 and 2 principally). The bifurcation is subcritical, with
a linear threshold at about e = 0.544 and hysteresis down t- c = 0,537 as sketched in fig.7. Next, a
supercritical bifurcation towards a quasi-periodic state takc ? lace, with a second frequency related
to the propagation of -% phase perturbation well synchronized over the width of the system. The
transition to turbulence then takes place through a loss of spatial coherence of these propagating
waves. The main process at the origin of this behavior deems to be % strong local instability of

the oscillatory state immediately followed by a reinforcement of coherence of that segment of the

solution that becomes messy, i.e. the birth of a coherent structures in which waves come and die. In

fact, a whole manifold asymptotic states can be observed at the same value of c. Typical samples for

L = 11.25 and L = 22.50 given in fig.8 and fig.9 respectively (time flows downwards, visualization

of the solutions by the position of maxima and minima).
When L becomes much larger than 50, confinement effects, now quite weak, do not seem to

play a direct role in controlling the appearance of time dependance r nd the transition process looks

much like a bulk phenomenon. A severe compression of the data is needed in order to visualize the

dynamical regime reached by the system in this large L, long time limit. What seems important
is the occurrence of coherent structures and it turns out that in these regions the peak to peak

amplitude is larger than in turbulent regions. As illustrated in fig.10, choosing some cut-off and
setting to black ;'egions where the peak to peak amplitude is larger than the cut-off allows us to

clearly discriminate domains remaining laminar from turbulent patches. A

'I ---- = -----. -



6-7

a

b

Figure 6: Two steady solutions of Model-(b): a) c 0.04 and b) e = 0.44.

A

,: C

Figure 7: Qualitative sketch of a subcritical bifurcation

f vieFig.1d displays the solution for L = 180 (about 350 rolls involved) and c = 0.692. It can be
viewed as made of a mixture of small islands of laminar domains of various size scattered amidst
a large ocean of turbulence. Such a dynamical regime is called spatio-temporal intermittency. The
main problem is to understand its birth and to predict its statistical characteristics as a function
of the control parameter. Increasing c one observes that the size of the largest laminar domains
decreases rapidly (see fig.12 for c = 0.84). On the other hand, when c decreases the largest laminar
domains reach sizes of the order of magnitude of L itself. Then, they can merge and completely
invade the system (see fig.13 for e = 0.68).

I 7
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Figure 8: For L, 11.25, solutions contain about 20 rolls as expected; a) periodic regime at
c= 0.600; b) weakly chaotic regime displaying the birth of a coherent structure at c 0.632.

Figure 9: For L - 22.5 one gets about 40 rolls; a) and o) two drastically different asymptotic states
at c 0.640 one extremely weakly quasi-periodic, the other chaotic.
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t

a- b

Figure 10: Visualisation of laminar domains (L = 90, c = 0.68, time running f-om the left to the

right): a) evolution of the solution from the position of extrema as before; b) same cvolution using

the reduction process described in the text.

Figure 11: Spatio-temporal intermittency for L - 180 and e = 0.692.

Figure 12: At c = 0.84 the coherent structures are much smaller.

A
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Figure 13: Below c - 0.8, spatio-temporal intermittency recedes more or less regularly, leaving a

quiescent state; around this value the situation is confused, with neither a marked recession nor a
steady invasion; this defines the threshold.

Numerical experiments suggest the existence of a well defined threshold above which the system
is intermittent, while it remains laminar below. As shown in fig.5, this threshold does not seem
to vary with L in the large L limit, hence the bulk character of the phenomenon. We shall come
back to the statistical signature of this transition later, after having examined the simpler case of
coupled map lattices.

3 Spatio-temporal intermittency in coupled map lattices

In view of applications, rather than the form chosen in the introduction, it is more convenient to
consider a coupled map evolution rule given by [9]:

pS= E w,

j=-p

where the Wj are well chosen weights shuch that Wj < 0 and Ej Wi = 1 (this has the advantage
of avoiding spurious instabilities of the type found in numerical simulation of partial differential
evolution equations using explicit schemes). Spatio-temporal properties of such systems have been
studied mostly because of their ability to mimic certain aspects of nonlinear pattern formation with
a great economy of numerical resources (for a review see chapter 7 of [10]). Taking F as the so
called logistic map: F(X) = RX(1 - X) or equivalently F(X) = 1 - AXI one can observe spatial
structures that develop for P or A in the direct cascade, or at the beginning of the inverse cascade
(see P. Berg6's lecture). Consider for example step k of the period doubling cascade at the limit
of zero coupling. Time translational invariance is broken and one out of 2k equivalent possible
phases is chosen by each site independently. Switching the coupling on, one obliges the sites to
take the phase of their neighbors into account. The result is a splitting of the system in domains of
identical phase, separated by walls. In practice, it is quite difficult to detect more than a few period
doublings. In the inverse cascade one gets a similar situation except that the dynamics is chaotic
instead of regular inside the domains. Of greater interest to us here is the occurrence of temporal
intermittency close to the lower end of the Period-3 window [11]. Well inside the Period-3 window,
when the coupling is weak one gets the same regime as above, with domains and walls. But closer
to the intermittency threshold, when the coupling is increased, the walls are seen to "explode" and
spatio-temporal intermittency sets in (fig.14).

_ _-2
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Figure 14: Sample of spatio-temporal intermittency at threshold for the logistic map close to the
Period-3 onset

The connection between spatio-temporal intermittency observed in coupled maps and that in
Model-(b) seems relatively obvious, but should be proven rigorously. As discussed earlier, one can
consider the whole system of length L as made of weakly coupled sub-units with lengths of the
order of the coherence length of the oscillations that were seen to decay as they penetrated into
the coherent structures. This "renormalization" of lengths would allow to define more precisely the
coupled local systems. Note that the status of the invariance properties of the continuous model
becomes unclear since one arrives at a lattice, which breaks translation invariance; however one
can reasonably think that their "macroscopic" consequences -on distances of the order of L and
on a corresponding phase diffusion time scale- can be averaged out by the small scale fluctuations
which could take them into account as a dynamical source among others ("renormalisation" of
mechanisms).

The discrete model we are supposed to derive from first principles should read:

SF(Xi) + j - 2F(X') +

In order to describe in a realistic way the spatio-temporail:' intermittent state we must ask the
local iterations to split the local phase space in 2 different re, .ons: a) the vicinity of a stable fixed
point where the dynamics is reduced to a relaxation towards the fixed point and b) a chaotic region
"far" from the fixed point. This two regions should be connected most probably intrinsically by
the iteration itself but an extrinsic coonection through the coupling force is also conceivable. The
demnonstration will be performed here using a local r.-ndel of type I intermittency (fig.15 111]) but
the vicinity of a crisis phenomenon could have been used. Take:

F(X) = -a + X + X2  for X_< c

F(X) = -3(X - c) + I - a for X>c

U

Figure 15: Local form of the iteration used for the coupled map lattice: A is the cut-off value which
discriminate between laminar and turbulent states



6-12

with c = (/5 - 1)/2. Parame-.er a which controls the distance to the intermittency threshold will
be kept constant: a = 0.01, the coupling constant e will control the transition.

Sites i for which Xi will be close enough to the stable fixed poin' X - ' = -0.1 will be
considered as laminar, otherwise they will be turbulent:

Xi<X, +A-A L

Xi >X+A -+ T

A starting state which is laminar everywhere stays laminar since no infinitesimal perturbation
can bring a site outside the attraction basin of the stable fixed point. On the other hand a finite
amplitude localized perturbation that bring a single site X, outside the attraction basinb of X.,
i.e. X, +6 > X. = +Va = +0.1 can grow and even destabilize its neighbors if the coupling is largd
enough. As illustrated in fig.16, the expected change of behavior takes place at c = 0.0618 with
finite duration turbulent transients below and sustained spatio-temporal intermittency above.

a' •1 ':• ul• :" *..." ... "I4~4.

" -- z ;.

Figure 16: ." intermittency in coupled map la : a) c to th t

(c •. •0. 1 b) sli-tl ,t(
tl .. -. ••.-•- , . ,"'L.-.,Z".

b ' . ," '; I € t , .. f , .,.". ,', ,,.

• .. "-I ," .•-.... ...,,.,. -L,'y•

Figure" ',,£ - ;•:. .. : .t• .". ..i,

Fiue16: Spatia-temporal interrnittency in coupled map lattice: a) close to the threshold
(e 0.0618); b) slightly above the threshold (e = 0.0630)
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4 The directed percolation approach

Let us now consider a fully stochastic approach in terms of probabilistic cellular automata. Such
systems are defined by transition probabilities which control the transfer of some information
through the system. To-be specific consider a chain of sites labelled by an index i. At each site the
local state Xj can be either A or B, 0 or 1 and the future state at site i depends on the states at
2n + 1 sites j, -(i + n) :5 j:5 +(i + n) with most often n = 1, i.e. three consecutive sites (fig.17a).
The most general process depends on 22n+1 free parameters but this number can be reduced by
symmetry considerations or other requirements (totalistic rules that depend only on the number
of sites in a given state among the interacting neighbors).

A simpler process can be defined with a coupling between only two sites. Take a square lattice
and look at it diagonally (fig.17b) then assume transition probabilities of the form: p(0111) =
p(1011) = pb, p(1111) = 1 - (1 - pb) 2. In addition one takes p(00I1) = 0 so that no spontaneous
creation of information can occur. This defines a process which can be understood as the transfer in
a well defined direction of the information X = 1 through a lattice from which some bonds (hence
the index b) have been removed at random. This can model for example the infiltration of a liquid
in a porous medium with sites at the end of pores that can be randomly open or occluded, the sites
being either wet (1) or dry (0); a site being connected to two dry sites cannot be wet, hence the
last condition. It is said that we have an absorbing state, from which no escape is p ssible.

S 11 0 I- I.V2

t•.l O 0D

C 0 a 0 0 Wtl
0 0 0 0

a b

Figure 17: One-dimensional probabilistic cellular automata: a) with 3 neighbors; b) with 2 neigh-
bors

Assuming that the information is introduced at some place in the lattice (the root of the process,
level 0) one has to determine the probability of transfer to some level k as a function of pb. This
is equivalent to say that the percolation cluster to which the root belongs can reach sites at level
k (directed bond percolation). It is known that when Pb > 0.6445 the information is transferred
to infinity with probability > 0. A slightly more general process allows for additional loss of
information at each site according to some site prolability p,. Transition probabilities are then
given by p(01l) = p(1011) = Jsp., p(1111) = p,(1 - (1 -pb) 2), still forbidding spontaneous creation
of information (p(0011) = 0). Even more general processes can be defined (see [12,13] for a review).

In the present context the correspondance is fixed by the condition that the laminar state
"L" should be absorbing. Moreover the definition of the deterministic process suggest rather a
probabilistic automaton with 3 sites coupled. In addition to p(LLLIT) = 0 which account for
the local stability oi the laminar state we can impose a priori left-right symmetry: p(LLTIT) =
p(TLLIT) and p(TTLIT) = p(LTTIT). This leaves 5 free parameters which can be determined
empirically from simulation on the initial model.

At the intermittency threshold for model the studied here, c 9.0618, we have found
p(LLLIT) = 0 as expected, p(TTLIT) = 0.9903 close to p(LTT IT) = 0 9906, and p(TLLIT) =
0.0115 close to p(LLTIT) = 0.0116. However p(TLTIT) = 0.0522 and p(LTLIT) = 0.6036 are
different from the two previous sets of values so that the equivalent probabilistic automaton is
certainly not governed by totalistic rules. At a qualitative level, simulations on the original cou-
pled map lattice and the probabilistic system with empirically found probabilities are practically
undistinguishable (fig.18).

- -S.'
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Figure 18: Qualitative comparison between simulation results from the coupled map lattice (a) and
the prbabilistic cellular automaton (b) is quite conclusive

Let us sketch the beginning of a theory connecting ccupled map lattices and probabilistic cellular
automata. For simplicity, we shall consider the case of the transition (LLTIT) whic± correspond in
general to the growth of a turbulent patch. Assume the laminar sites at i = -1,0 and the turbulent
site at i = 1. The future state at i = 0 is given by:

Xo = X° + 6 = (1 - c) F(Xg) + I (F(X°, + F(X°1 ))

In order to simplify the problem we shall assume that laminar sites at t = 0 sit exactly at the fixed
point. Using the fact that F(X.) = X, we get:

6- (F(XC'1 ) - X.)

The site i = 0 will be turbulent at time t = I if 6 > A, that is to say if F(X+I) belongs 'o the
interval (X&; Xn) where XA = X. + 2A/e and Xm is the upper bound of the interval invariant

by F (X. = 1 + a), see fig.15. Assuming further that the the probability of the turbulent state
is uniformly distributed on the interval (X, + A, X,,) so that the probability of having F(X+I) in
the interval (XA, X,.) is simply proportional to the length of the interval, one gets:

p(LLTIT) Xm - X,-

The variation of this probability is in reasonable agreement with experimental data. Other cases
where the central site is laminar can be handled in the same way. The cases where the central

site is turbulent are more delicate since one has to take into account the fact that it has already a
nontrivial dynamics for its own (turbulent transient subjected to noise from neighbors)
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The main interest of pointing out an analogy between the transition to turbulence via spatio-
temporal intermittency and directed percolation is that one can borrow tools and concepts of
statistical theory, especially the notion of critical behavior and critical exponents. Their use has not
yet been extensively developed in the present problem since the practical implementation requires
a huge amount of computation to get reliable results. Up to now only the statistics of the lengths of
coherent structures have been examined both for the coupled map lattices and for Model-(b). The
comparison between statistics for the coupled maps and the probabilistic automaton shous that
the analogy goes beyond the qualitative level (fig.19) while calculations for Model-(b) exemplifly
the distinction between the vicinity of the threshold where the distribution of lengths of coherent
structures decays as a pow. "-w, as opposed to the exponential decay observed far from the
threshold, thus supporting the idea of a critical domain in the sense of critical phenomena (fig.20).
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Figure 19: Statistics of the lengths of coherent structures for the coupled map lattice (o) and the

probabilistic cellular automaton (*) are practically identical up to lengths of the order of 80 above
which end effects are sizable (simulation on 500 sites)
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Figure 20: Distribution of the lengths of coherent structures in the intermittent phase for Model-(b):
a) log-log plot at threshold c = 0.688: algebraic decay; b) lin-log plot above threshold, c 0.84:
exponential decay.
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- 5 Summary, conclusion, and perspectives

In this lecture we have presented a scenario of transition to turbulence specific to large aspect ratio
systems. Starting with simulations on a model chosen for its relevance to the field of convective
instabilities we have characterized the spatio-temporal intermittent "phase". Then we have exam-
ined the transition process having recourse to simplersystems: coupled maps lattices. This process
appeafed to involve the propagation of an information, laminar/turbulent which seemed stochastic
though it was generated by a deterministic dynamics. Concepts first introduced in the statistical
physics of critical phenomena applied to directed percolation allowed to account for most features
of spatio-temporal intermittency, and especially the change of behavior at what turned out to be
a true threshold.

The implications of this approch are important because in large aspect ratio systems we have
to face the possibility that what we think is turbulence may be simply a finite life-time but very
long turbulent transient. If the percolation analogy is valid, then a threshold exists above which
the turbulent state percolates through the system and turbulence as virtually no chance to decay.
At a more conceptual level one can say that the described process can help us reconcile local, short-
term determinism with turbulence for weakly confined systems in much the same way as strange
attractors allow to reconcile determinism and temporal chaos for systems with a small number of
degrees of freedom.

Now, a question: is this scenario only a nice theoretical view which works in model systems
built on purpose? The answer seems to be: No! In a recent experiment briefly sketched in fig.21, P
Berg6 and M. Dubois [i] have observed a transition to turbulence which may follow th-. theoretical
scenario. Indeed, as indicated in fig.22, the loss of spatial coherence involves the alternation of
coherent structure a few rolls long, and messy regions with the possible breakdown of a messy
patch into a coherent structure.

Intermittency has a spatio-temporal meaning in many othur contexts of fluid dynamics (see
[211 for a general review). First, one can think of small scale active structures in the dissipation
range of fblly developed turbulence, though the connection could be only visual (fig.12). Second,
the present approch could help understand the growth/decay of turbulent iplugs in pipe flows.
Finally, one could also try to introduce analogous percolation concepts for the description of the
internittent structure of the frontier of turbulent boundary layers like that in fig.23.

Figure 21: Annular cell used by P. Berg6 and M. Dubois: coherent domains are separated by messy
regions; the whole evolves chaotically in the long term.

6I
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Figure 22: Exemple of spatio-temporally intemnittent signal with the birth of a laminar domain
comparable to coherent structures teDpearing in the model; time is running downwards, the hatched
region is laminar.

Figure 23: Illustration of the intermittent nature of the outer part of a turbulent boundary layer
from ref.22 plate 157
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DETERMINATION OF FRACTAL DIMENSION, CONNECTION OF SPACE AND TEMPORAL CHAOS AND
APPLICATION TO EXPERIMENTAL RESULTS
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Largo E. Fermi 6

50125 Firenze (Italy)

I - INTRODUCTION

In the last decade many experiments have demonstrated that the transition to chaos
is a low dimensional phenomenum even in hydrodynamic instabilities governed by an
infinite number of degrees of freedom /I/.

However in fluid systems the physical origin of the chaotic regimes is not very
well understood. Mathematical models that incorporate the correct dynamics and allow a
prediction of the behavior as a function of the control parameter are not generally
available. Very often experimental observations can be just correlated with the behavior
of simple maps, as in the case, for example, of the Feigenbaum cascade /2/, and quasi
periodicity /3/.

Besides an other problem remains open: is low dimensional chaos a precursor of
fully developped turbulence, where the fluid flow exibits chaotic states both in space
and time? To give new insight into tnis problem there is nowaday a growing interest in
the study of the relatioship between spatial order and temporal chaos.

For example it has been observed in numerical studies of certain partial
differential equations (P.D.E.) /4,5/, and of coupled maps /6/ that coherent spatial
structures coexist with temporal chaos. From an experimental point of view spatial
patterns have been quantitatively analysed in time dependent chaotic regimes only in few
experiments /7-10/. We describe here two of these experiments, where the chaotic states
have been also quantitatively characterized in terms of fractal dimension, metric
entropy and lyapunov exponents. The method to compute these quantities are briefly
summarized in the appendix.

In Section II we report experiments on surface waves instabilities /9/, where the
competition between two spatial patterns produces time dependent behavior and chaos. The
Lesults of this experiment are in good agreement with a low dimensional model obtained
from Navier-Stokes equations /11/.

In 3ection III we describe experiments on time dependent behavior /10/ of a
horizontal fluid layer, heated from below, that is Rayleigh-Benard convection (R-B). We
show that time dependent regimes are characterized by the presence of either traveling

waves or 3ocalized oscillations. These spatio temporal regimes turn out to be similar to
those observed in numerical simulations /4/ of Kuramoto-Shivanshlsky (K-S) /12/ and
Kuramoto-Velarde (K-V) /13/ partial differential equations. At the end of section III we
report exoerimental evidence that the properties of the chaotic regimes depend on space
coordinates.

II - S|IRFACF WAVF1 TFcI'V!TTITES

The system of interest is a cylindrical fluid layer in a container that is
subjected to a small vertical oscillation of amplitude A and frequency f. . It is well
known that, if the driving amplitude exceeds a critical value Ac (4 ), which is a
function of frequency, the free surface develops a pattern of standing waves. The
surface deformation S(r,e ,t) can then be written as a superposition of normal rodes:

S(r, & ,tJ = 7- am (t)J (kem r)cos!6,

where Jq are Bessel functions of order V1 and the allowed wave numbers kc,., are
determined by the boundary condition that the derivative J! (kt.1 R)=O, where R is the
radius of the cylinder. The modes may be iabeled by the indices C. (giving the number of
angular maxima) and m (related to the number of nodal circles). The mode amplitude a(t)
develo- a instability when the corresponding eigenfrequency (given by the dispersion
law for capillary gravity waves) is approximately in resonance with half the drivinR
frequency f and A exceeds A, (fo ).
This parametric instability leads to standing waves in which the mode amplitude
oscillates at f./2. To take into account the possibility of a further slow modulation of
athe mode amplitudes, which, in fact, accurs due to mode competition, we write each
amplitude in terms of fast oscillations at f /2 and slow envelopes Ce(t) and Be(t):

a ?I (t)=^,(t)cos(r1 f. t)+B,(t)sin( ,if ).
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FIGURE I
Optical intensity patterns for the (4,3) and (7,2) modes. The first index gives the
number of angular maxima.

We omit the second subscript because, In practice, only a single value of m is

significant for a given value of F . In our experiment the working fluid was water of
depth of I cm, and the radius of the tank was 6.35 cm. Examples of stable patterns
involving a single mode (and possibly harmonics) are shown in Fig. I for the (7,2) and
(4,3) modes. The index £ is obvious from the simmetry while m was determined by
matching the frequency to known dispersion law. The white areas correspond to surface
depressions (tipically 0.5 mm) and the black ones to surface elevations. The driving
amplitude A was about 1.1. A and the frequency was at the minimim of the stability
curve in each case. The two figure have been obtained with a focalisation technique.

X0

175

|I. OI I5 5 |, . 12 6

100

25
13 56 357 Is* 340 143 162 143

FIGURE 2

Phase diagram as a function of driving amplitude A and frequency fo . The crosse. are
experimentally determined points on the stability boundaries. Stable patterns occur in
tne regions labeled (4,3) and (7,2). Slow periodic and chaotic oscillations involving
competition between these modes occur in the shaded regions.

The behavior of the system as a function of A and f0 is shown in Fig. 2, where a
small part of the phase diagram is reported. Below the parabolic stability boundaries,
the surface is essentially flat. Above the stability boundaries, the fluid surface
oscillates at half the driving frequency in a single stable mode, C& and Bg are
constant as function of times. The shaded areas are regions of mode competition, in
which the surface can be described as a superposition of the (4,3) and (7,2) msodes with

amplitudes having a slowly varying envelope in addition to the fazt oscillation at f,/2.
They oscillate periodically or chaotically at a mean frequency that is two order of
magnitude smaller than f.

Our experimental appsratus, described in Ref. 9, allows us to study a fixed lineal-
combination of the slow coefficients Ce(t) and Bt(t), which we denote by a* (t). In Fig.
3 is shown the time dependence of aO and a*,.

The slow oscillatton resulting from mode competition is periodic in this case and
et. leads aý by about 900. This phase relationship is significant it implies that the
mode (7,2) pump (4,3). rhe dynamic of the slow oscillation was explored by varying A and

f separately inside or the interaction region. In Fig. 4 time series and corresponding
power spectra of the slow oscillation are shown for three different driving amplitudes
but fixed drivJng frequency of 16.05 Hz.

As the driving amplitude is increased, a chactic state with a broad power spectrum
is obtained. We characterize the chaotic behavior quantitatively by computing from the
experi'-ental data the correlation dimension of the attractor and a lowe., bound K;

" . . . . . . . . ..
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for the Kolmogorov entropy K. When the oscillation is periodic (A=l21 ,um), we find
) -=1.0 10.04 and K,, - l=(0 0.01) sec-' . On the other hand when the slow oscillation iS

Chaotic (A=lgoAm), ) =2.22±0.04 and K'=(O.l1O.O1)s-t . These measurements clearly
demonstrate that the attractor has a low (and fractional) dimension and that there is at
least one positive [yapunov exponent.

0

00

FIGURE 3
The slowly varying amplitudes ao and a,' ocillate periodically.

10

(a)5 b)A- Lujz 1

o 3

-10 [I•

Lai ) /(* A- H 1)

FIGURE4

The transition fros periodic to chaotic oscillation. Time series and corresponding power
spectra of the slow oscillation are shown for f.=16.05 Hz and three different criving
amplitudes. Broad-band noise is associated with the appearance of a subharnonic f1/2 of
the dominant oscillatior..

This result csn seem in contrast with the fact that tire resoived spatial lout'ler

spectra show the presence of many other modes with •, =3,8.11.14 besides the sodo (1,2)
and (4,3). However this has been expldined by a theory of E. Meron, I. Procarcin /11/.
They start from Navier-Stokes equations with suitable boundary conditions. They can
prove rigorously, using center-manifold and normal form theories that the oynamlcs is
governed by the modes (7,2) and (4,3) ano all the other modes are enslaved by these two.
Finally they obtained a system of four coupled ordinary differential equations for the
amplitude of the mode (7,2) and (4,3). The phase diagram of this system is in very guod
agreement with the experimental one. Time dependent behaviors either chaotic or per~odic
are indeed reproduced at the intersection of the stability curves of the two modes.

This experiment and the assuciated theory have shown how the incredible reduction
from a large to a very small number of degrees of freedom occurs in practice. They have
also shown that temporal chaotic behavior is produced by the interaction of spatial
modes and that spatial order can be preserved in time dependent aperiodic regimes. This
result was made possible by a time resolved analysis of the spatial patterns whichS~~allows a more direct c-.,parison with th• theory.

In other instabilities, such as (R-B col~vection) a time resolved analysis of
spatial patterns in temporal chaotic regimrs hem been carried out only in few
experiments and we will show in the next pazragrapi that also in this case the study of

0 S
I I .T11 f 10 [[[!'111
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spatial patterns is very useful to compare the observed behavior with that of a
realistic model.

III - RAYLEIGH-BENARD CONVECTION
IIIa Experimental apparatus.

We remind very briefly the properties of thermal convection in a fluid layer heated
from below, that is Rayleigh-Benard instability /1/. When the temperature difference

AT between the two horizontal plates, confining the fluid exceeds a critical value A T,
convection begins and the fluid motion forms a periodtc structure, a set of parallel
rolls, with a wave number qmýY/d, where d is the depth of the layer. The most relevant
parameters are the Rayleigh number R = 4X dAT/ I and the Prandtl number
P = 6/K. Here ýk,g, J,K are respectively tfe volumetric expansion coefficient, the
acceleration of gravity, the kinematic viscosl-y and :he heat diffusion constant. It has
been computed that for an infinitely extended horiLontal layer the critical Rayleigh
number at which convection sets in is Rý =1708.

Increasing R above R, another threshold Rr is reached where the fluid motion
becomes time dependent. The value of R-, and the behavior of the fluid strongly depend
on P. and on the aspect ratio 

1 
, that iq the ratio between the horizontal l.ngth and

depth of the layer.
Rayleigh-Benard convection has been widely used to study the transition from a

regular to a chaotic motion. Nevertheless spatial patterns in R-B have been studied just
near the threshold of the instability in large aspect ratio cells and a good agreement
with theories has been found /14/. On the contrary convective patterns in time dependent
states has been investigated just in a few experiments /7-8/ leaving open many question
on the role that the spatial degrees of freedom play in the transition into these
regimes.

Thus to have a better insight into the mechanisms leading to chaos in thermal
convection end to allow a more direct comparison with numerical models we have
experimentally /10/ studied the evolution of the temperature field in time dependent
regimes of R-B convection.

In our set up the fluid layer has horizontal size 1,,=4 cm, l,=l cm and height
d=l cm. The x and y axis of the coordinate reference frame are respectively
perpendicular and oarallel to the rolls axis, (Fig. 5). The z axis is the vertical one.

FIGURE 5
Schematic diagram of the cell: T,THi, 1H, thermistors, W water circulation, DTC
temperature different controller, Ed electric heater.

The fluid is silicon oil with Prandtl number = 30. The botton and top plates are
*iade of copper and the long term stability of the temperature difference is better than
4 m*C. This stability has been obtained with three independent temperature regulators.
The first one is a water bath with a stability of about 0.050C. The water rirculates in
the botto:m and top plates where a electrical resistor is inserted in each cf them. The
two heating resistors are connected with othe- two stages of regulation. Ore stabilizes
the temperau'ure of the upper plate, the other controls temperature difference between

% the two plates. Thne last regulator is connected to a micro-computer that allows a
complete automatization of the measurement.

The late:al walls of the cell are made of glass to allow for optical inspection.
The detectlon system consists of a lase- beam that crosses the silicon oil perpendicular
to the (x,z)-plane and is deflected by the thermal gradients inside the fluid. The laser
beam sweeps the (x,z)-plane and we can measure the temperature pradient averaged along y
in 1024 points of the (x,z)-plane by a method described elsewhere /15/. The 1024 points
are in an array with 16 rows of 64 points each. Precisely, for each position of the
impinging beam, the unperturbed zero gradient is measured by a position-sensitiveI !a
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detector and recorded in a computer. Later upon application of temperature gradients we
can measure the horizontal-and vertical-shift components, respectively proportional to
the horizontal and vertical refractive index gradients a n/ ý x and ý n/ a z averaged
along the y-axis, that is along the optical path of the laser beam. From these gradients
one infers the temperature through the relation ýT/l= ( d n/ff.)T/? x) and similar for
z. The temperature field is then easily recovered by numerical integration of the two
recorded gradients. The sweeping time is fast compared to the time scales of the
phenomena under study. Therefore, by this method we can study the time evolution of the
temperature field.

We perform the experiment in the following way. We start from zero temperature
difference between the two plates and then we increase the temperature of the bottom
plate till the maximum allowed in our apparatus eorresponding to about R=400 R . The
steps in which the temperature has been increased are separated by sufficient amount of
time to allow the system to relax to a stable state. This type of run has been repeated
several times to check the dependence of the found regimes on the way in which the
control parameter has been varied.
IlIb Spatial Patterns.

Analysing the fluid behavior as a function of r=R/Re we find a stable four rolls
structures at r 80. Above this threshold the regimes of the system are outlined in
table I

TABLE I

Interval r I regime Spatial structure

11 80-90 I TD R4 + LO
12 90-95 I S R4
13 95-130 I TD R4 + LO+TW
14 1)-150 I S R4
15 150-182 I TD R4 + LO
16 182-186 I SHO R4 + TW
17 186-200 I * **

18 200-300 I TD R4 + LO+TW

TW = Traveling waves
TD = Time dependent
S = Stationary
LO = Localized oscillations
SHO= Shilnikov type homoclinic orbit
R4 = 4 rolls

The interval 11 is not observed in all of the runs
"* the interval 17 presents a stationary regime in some run, and localized

oscillations of very small amplitude in others.

From a run to another the intervaw initial positions are reproducible within 10%,
whereas the length of the interval does not change sensitively. Instead the behavior of
the system in the time dependent regimes can be different from a run tc another. For
exa•ple, in the interval IS we can find other subintervals of periodic, biperiodic and
chaotic behavior, but their existance is related on the speed with which the temperature
gradient is increased and on the previous story of the system.

So we focus Just on the general features that we always observe. In particular we
see in Table I that the time dependent regime, are associated with two different. spatial
patterns one characterized by localized oscillations the other by traveling waves.

After verifying that the dynamics does not depend sensitively on the z coordinate.
except for the amplitude of T , we focus our attention just on the evolution of the
horizontal component of the gradient u(xt) = / measured at a fixed z. The
horizontal gradient is infact a direct result of the measurement and furthermore it does

not contain the amplitude of the stationary gradient imposed between the two plates.
In what follows w(x,t) = u(x,t)-U(x) and U(x) is the time average of ;(x,t). The

"energy" E(t) is the spatial average of w (x,t).
Besides the study of u just in one direction allows, a more direct comparison with

numerical simulatlons done in unidimensional partial differential equations (P.D.E.).
As an example we show in Figure 6 the evolution of w as a function of x and time t.

We see here that the oscillations are localized in space both in the periooic regime
Fig. 6a at r = 83 and in the chaotic one Fig. 6b) at r = 87.5. The localization can be
also quantitatively measured by making the Fourier spectrum S(f,x) of time series w(x,t)
recorded in different position of the cell. The spectrum S(fx), with x = 1.5 cm is
shown in Fig. 7a) at r=86.5 bhperiodic regime and Fig. 7b) chaotic regime at r=87.5. The
amplitude of S(f,x) at fl, fý2 as a function of x at r=86.5 and at r=87.5 is shown in

'3AI
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* Figure 8a-b) respectively.
The amplitude of S(f ,x) changes of about 3 order of magnitude by moving the

* measuring point of only 4 mm. We see the high degree of localization of the
oscillations. We also observe in Fig. 8b) that the maxirmum amplitude of the two
frequencies tends to become equal at the onset of chaos.

This spatio temporal regime with localized oscillations is not the only one that we
observe. Increasing R we find other windows of time dependent regimes that were
characterized by the presence of traveling waves. As an example we report in Fig. 9b)
the evolution of w (x,t) at r=230 where a biperiodic regime was present. We see that
there are waves starting in the center of the cell that propagate toward the sides of
the cell. This traveling structure is more evident in Fig. 9c) where the spatio temporal
correlation function C(A,• )= ýw (x+AN,t+')w(x,t)dx dt is reported. We see that the
extrema (Fig. 9d) of C propagates with a velocity of about 0.06 cm/sec. This velocity is
consistent with the velocity scale constructed with /d=0.03cm/see for our fluid.
w (x,t) the time evolution of the maxima of C(tI- ,6) measured in the chaotic regimes at
r=268 are reported in Fig. 10. We see that the spatial behavior does not change
sensitively when the system is driven from a periodic to a chaotic time dependent
regime.

Seo

0,

X/d *

FIGURE 6
Evolution of the time dependent component of the horizontal temperature gradient w (x,t)
recorded at r = 83.5 a) and r = 87.5 b). The corresponoing horizontal gradients u (x,t)
are instead reported in c) and d) respectively.

The transition between localized oscillations and traveling waves occurs at r 2: 180
with a regime that has an evolution like that shown in Fig. lla). This evolution is
characterized by the presence of quasi laminar oscillations that are interrupted by very
large oursts. 1'his regime is produced by a sort of competition between two spatial
structures, one associated with the laminar period, the other with the fast transient
This is shown in Figure llb where the temporal evolution of u(xt), averaged over 4
periods of the fast oscillation of Figure lla, is reported. We see that during the fast
transient of Figure lla, the time averaged structure of the convective motion shifts In
an appreciable way the position cf the rolls boundaries (points where

This change corresponds to a switch of energy (the energy in a mode is the
amplitjde of the spatial Fourier spectrum) between the odd and even modes of the spatial
Fourxer transform of w (x,t). The0 priod of time T between two bursts diverges with
the following law TV =850(r-r ) sec when the bifurcation point for this regime
p = 182.5 is approached.

It is important to note that the presence of two different time dependent spatial
patterns, one characterized by localized states and the other by traveling waves are
also observed in numerical simulations of some partial differential equations /4/ and in
particular in the Spiegel model /4b/ written just to describe buoyancy driven convection
in astrophysics contest.

The transition between localized oscillation and traveling in this equation takes
places via a Shilnikov type homoclinic bifurcation. This bifurcation is characterized by
a time evolution like that shown in Fig. lla and is related with big changes of the
spatial structure during the burst as indeed happens in our experiment.

--V

- -~ *. i|
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FIGURE 7 FIGURE 8
Fourier Spe(trum S(f,x) of the time Amplitude S(f,x) at frequency f ,f
series of u(x,t) recorded in the as a function of the x coordinate
point x=1.5 at r=86.49 blperiodic in the btperlodic regime a) and
regime a) aid at r =87.49 b) chaotic in the chaotic regimes r 87.5 b.

regime.
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FIGURE F FIGURE9
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FIGURE 10
Traveling waves. a) time evolution at w (x,t) recorded at r-268, b) time evolution of
the maxima positions of the spatio temporal correlation functions C(4 ,r ).

IIIc Fractal dimension and metric entropy
Several methods have been proposed /16/ to compute fractal dimension D and metric

entropy (M.E.) from experimental time series. These two quantities are indeed very
useful to characterize the chaotic dynamics. To compute ') and M.E. the dynamics of the
system in phase space has to be reconstracted from experimental time series.
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(b)

S0 0 -0. 0 O

0.04.

FIGURE 11
Transition between localized oscillations and traveling waves.
a) temporal evolution of the energy.
b) temporal evolution of the spatial structure u(x,t) averaged over 4 periods of the
fast oscillation.

In many experiments only a single scalar signal V(t) is monitored. In this case the
attractor can be reconstructed invoking the embedding theorem /1/ (see Appendix).
However in extended systems the use of a single scalar signal cannot always describe the
global behavior of the system. In several experiments done in fluid systems /17/ the
scalar signal V(t),, used to reconstruct the attractor and to compute F.D., is often
obtained by the local measurement of a variable (e.g. horizontal temperature gradient,
vertical component of the velocity). On the basis of the results described in the
previous section some questions arise naturally. Does F.D. depend Cn the point where the
measurement has been taken? Do we get different results using a spatially averaged
measurement instead of a local one? Furthermore with our experimental apparatus there
are other ways of constructing the phase space. Suitable m-dimensional phase spaces can
be generated by using as coordinates either the mode amplitudes of the spatial Fourier
transform of u(x,t) or simply the u(xht) measured in m different points x,= i n . In
what is following the first one will be called Fourier space (F.S.) and the second one
space shifted coordinate phase soace (S.C.S.).

To estimate D the correlation dimension > /16a/ (see appendix) is computed with a
number of data points N ranging from 4000 tc 8000.

The correlation dimension obtained using the embedding technique, the F.S. and
S.C.S. will be indicated respectively with 1), ' ,7 . Using the method proposed in Ref.
18 we have also computed the quantity Ký , (see appendix) that is a lower bound for the
metric entropy. We checked the dependence of )' and k2 on the point of the cell where
the time series have been recorded. The results are reported in Figs. 12a and 12b
respectively at r=267 and r=270. In Figs. 12c and 12d the corresponding K2 is shown. We
see that V and K slightly depend on the point of measurement in both cases.

We point oul that this result is not correlated with the local signal -to-noise
ratio whose reduction normally produces an increasing in the extimation of D/19/.

For a constant instrumental noise, the above ratio is proportional to the local

time dependent amplitude whose rms value is shown in Figs. 12e and Iv'. (The maximum in
thn vertical scale corresponds to a signal to noise ratio of about 10 .) Comparing Figs.
12, -id 12b respectively with Figs. 12e and 12f, we see that an increasing of fraccal
dimt ,ion does not necesserely correspond to a decreasing of the signal amplitude. More
specifically there are points where 1, is large and the amplitude of the signal is
large. This fact clearly demonstrates that the spatial dependence of is intrisic of
the fluid behavior. Indeed it is related to neither to signal to noise ratio nor to the
delay time used to reconstruct the attractor.

The values of ) have been compared with 1) and 9 . We find that P is very
close to the value obtained by averaging the 9 computed in different positions of the
cell. P is is equal , within error bars, to V

The results of )* ,7 and K, at different r are summarised in Table 2. The
results of )) reported are those obtained from the time series u(x,t) measured in
x=2 cm. In the periodic and quasiperiodic case )) does not change as a function of the
position within error bars.

TABLE 2
R/R K2

220 1.02± 0.001 1.04+ 0.02 0.03Ol.0
252 2.14#O.0l 2.310t 0.06 0.06 30.01
268 2.45to0.05 2.6170.06 0.0810.0l
270 3.68; 0.08 4.141 0.05 0.15 r0.01
271 3.89 0.1 4.20Z0.l 0.18 !O.Ol
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FIGURE 12
Tne spatial dependence of the correlation dimension (aY K2 (c) and the signal amplitude
of w(x,t) measured at r=267. The same quantities measured at r=.2,O are respectively
shown in b), d), f). The errors of )) are about 3% and those of k2 about 5%.

IV - CONCLUSION

The main result of this investigation is that the study of the spatial feature of
temporal chaotic regime is very important to understand the physical mechanism leading
to chaos.

Besides, the results described in section IIIc on the calculation of fractal
dimension and metric entropy open some interrogatives on the reason why Q depends on
the position and 3, ,.5 are equal to the averaged value of

Much more theoretical and experimental work will be necessary to better understand
this problem and the role of spatial pattern in time dependent r'-imes. We believe that
our approach can be very useful in the study of the transition from low dimensional
chaos to turbulence where the system exibit a chaotic behavior both in space and time.
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, •APPENDIX

Many phenomena exibit chaotic ;tates that can be described by a low dimensional
strange attractor in phase space /l/. Such an object is characterized by fractal
dimension and metric entropy and several methods have been proposea to compute them from
experimental time se~ies /16/. The former roughly estimates the number of independent
variables involved in the process. The latter measures the average rate of information

loss per unit time. Fractal dimension and netric entropy can be advantageously used to
discriminate in an experiment between a purely stochastic phenomenon and low dimensional
chaos /19/. Also the direct measure of the Lyapunov exponents is useful to characterize
the chaotic motion. They measure the average divergences of the trajectory in phase
space. These three quantities are indeed related. The metric entropy is the sum oZ the
Lyapunov exponents and fractal dimension is related to the Lyapunov exponents by the
Kaplan-York formula.

Al Phase Space
In many systems only a single variable V(t) is monitored the phase space of the

system has to be reconstructed invoking the ambedding theorem, V(t) that is constructing
avector x(t) of coordinates V(t), V(t + • ). V(t +(m - 1)Z)2, where m is the
dimension of the space and . an arbitrary delay. (In practice Z can be varied only
within a certain range to have a reliable estimation of fractal dimension /20/. In Ref.
21 a method to find the optimum value of ý has been recently proposed).

Examples of the projection of the phase space on the plane (V(t) V(t+i ) ) for the
experiment described in section I are shown in Fig. Ala, b, c for the driving amplitudes
reported in Fig. 4 . The delay Zj is 3 sec.

to

-I0 00- (a)
QIs

A. 121 ,

-10 0 0
10

-a0 0 ao

A 149).

-10 0 10

Figure Al
Phase portrait for the data of Figure 4. Divergence
of nearby orbits can be seen quantitatively in the phase portrait.

A2 Fractal dimension
A strange attractor is in general an object of fractional dimension. Th~s means

that the number of cells of size F needed to cover the attractor scales as I where
D is the fractal dimensin. The calculation of D is a useful way to characterize the
degree of chaos but it needs a very big memory and it consumes a lot of computer time.
However several other definitions of dimension lead to more practical algorithims.

To estimate fractal dimension D we use the correlation dimension )) that is smaller
than D. However in practifal cases the difference D-P) turns out to be very small. The
correlation dimension is defined in terms of C(6 ), nrmber of data points whose
separation in phase space is less than • (divided by N ). For N -. ' this quantity

scales as therefore:
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An example of C(S ) for the chaotic attractor of Fig. 4c is shown in Fig. A2 for
different embedding dimensions. The local derivative of C(. ) is shown in Fig. A3a. The

slope can be seen to reach a limit value in the scaling region -1.5<- < 0 and does
not increase once m is larger than about 4.

4*

'++: ++ + .++ I+ ....t
+ + ~ + ÷+÷ ++

2 + + + +++ ++

2 +++÷ +÷
+++ ++ ++++, ;

++ +++.÷+

+ + + +

0 ... ... ..÷

-3 -2 0÷

Figure A2

The correlation function C( ýE ) for various values of the embedding dimension m. The

limiting slope for large m is the correlation dimension )) of the attractor.

The height of the plateau is 2.20± 0.04 that is the correlation dimension of the

attractor at A = 19O/um.
For values of a smaller than those in the scaling region that is comparable with

the noise level the slope has about the same value of the embedding dimension /19/.

A3 Kolmogorov Entropy

The Kolmogorov entropy measures the average rate of information lost per unit time
and it the sum of the positive Lyapunov exponents. ýrom th-$ measur~ment of C(_% ) is also~
possible' to determine K 2that is a lower bound of the Kolmogorov entropy. It is defined

as C - 9/ - (

Here C,,, (r, ) indicates the correlation function OCt ) computed for the embedding
dimension m. An example is shown in Fig. A4 for the chaotic data at A = 190/um reportid

in fig. 1 of section 1. We see that K 2mreaches a limiting value of (0.1±0.01)sec
this means that at least 1 Lyapunov exp6nents is positive.

-l 0 "J

-3 -2 +1 0 ++1

Figure A3
Measurements of correlation dimensi on P) . the derivative (local slope) of the
function log C(6 ) with respect log ~Treaches a limiting vmllie in the scaling range of
d=2.20+(U.04 for m;>4.
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Figure A4
Dependence on embedding dimension of the function K2 m (defined in (5.3)), which is less
than or equal to the sum of the positive Lyapunov exponents. The curves are fits to the
data for the chaotic state (upper points) and periodic state (lower points), for log

= -1. the positive limit of the upper curve for large m demonstrates that at least one
Lyapunov exponent must be positive, so that the trajectories exhibit exponential
divergence.

A4 Lyapunov exponents

We analyze now the algorithm proposed in Ref. lb for computing Lyapunov exponents
from an experimental time series. We first describe the method and then we apply it to
an experiment of Rayleigh-Benard convection /22/.

The discussion below deals with scalar signal but the method can be easily extended
to multidimensional signal.

Conceptually, the algorithm to be discussed involves the following steps:
a) reconstructing the dynamics in a finite dimensional space,
b) obtaining the tangent maps to this reconstructed dynamics by a least squares fit,
c) deducing the Lyapunov exponents from the tangent maps.
We now consider these different steps in detail.
(a) In general the variable experimental V(t) is sampled at fiAed time interval so we
define x i=V(iA t) for i = 1,..., N where N and A-t are respectively the number of data
points and Lt the sampling time. We choose an embedding dimension d. and construct a
d -dimensional orbit representing the time evolution of the system ty the time-delay
method. This means that we define

xi = (xi,xi+1. . xd _i , (-)

for i = . N-dE+1.

(b) Having embedded our dynamical system in d dimension, we want to detexmine the dE xd
matrix T which describes how the time evolution sends small vectors around x to smalf

vectors around x i+l The matrix Ti is obtained by looking for neighbors x, of x, and
imposing

T (x - x) x -xi+1 . (2),
i j i - j+l

the matrix T is determined by a least square fit with the condition Ix - xii< .
Note that, in view of (1), (2), the matrix T has the form

i

0O0 1... 0
°~1

0 0 0oo ... 1;
a 1a a a 3-' a d

E'

(c) Step (b) gives a sequence of matrices Ti, Ti 1' T , "'R One determines
successively orthogonal matrices Qu4 )tand upper triangutar e'mttices R ith positive
diagonal elements such that 0( (W tmatrix and
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T1 Q(0 ) = Q(1)R(1)

T2 Q(Ij = Q(2)R(2),

T +JQ (o, =-Q(J+I) R Q+l)

Then the Lyapunov exponents A are given by K A -g( At 3:"

where K < (N-dE -1) is the available number of mitrices. As an example we present in
Fig. AS the Lyapunov exponents for the Lorenz model as a function of d . The horizontal
dashed lines represent the correct values. To reduce the dimension of the matrix T ,
without spoiling the calculation of the first positive Lyapunov exponents, that can be
useful when d . becomes very large, we define a dM such that

dE = (dM-1) m+l

and the associate vector is

xi = (x. , x

To mantain the same form of Ti, providing of changing dE with dM the (2) is replaced by
the condition

Ti(xi -xj) -x
i ( X i+m xJ+m

However this does not means that the number of used points are reduced by a factor m but
all the data points are used to find the nearest neighbours.

We have applied the method to the R-B experiment described in setion 3.
Specifically we have studied the chaotic regime in the interval 170 R/R 185 wherec
the system exhibited a transition to chaos via intermittency. The main frequency was
about 75 mHz. To have a sufficient number of neighbours in the calculation of T1,i,40000

points with a sampling frequency of 5 Hz, have been recorded for each measurement. This
way, the time evolution of the system is followed for about 600 periods of the main
oscillation. Many tests have been done to verify how Lyapunov exponents depend on dE and
d. It has been found that the value of X is sufficiently stable in the internal
28<dE< 25 and 5<dM<8. The results are reported in Figure A6, where the values of the
positive Lyapunov exponents are shown as a function of R for different IE and d . We seeSm
that the quantitative behavior of the curves is similar and the difference between them
is about 10%. the measurements where done for R/R = 171.41, 174,08, 175.75, 182.10,
183.44, 184.79. rigs. A7 show details for R/R = ln2.10. By moving the detection point
inside the cell of about cem and keeping R at fhe last value shown in figure A7 we find
that the Lyapunov exponents charge by less than 5%. As a conclusion, the positive
Lyapunov exponents in the chaotic regime of a R-B convection experiment have been
determined using the method proposed in Ref. lb. Even though the error of the
measurement is not small (about 10%) it is still possible to follow how the number of
the Lyapunov exponents and their values change as a function either of the control
parameter R or of the position where the measurement has been recorded inside the fluid.

K

Figure AS

Lyapunov exponents for the Lorenz model as a function of dM.
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Figure A6

The three largest Lyapunov exponents as a finction of the Rayleigh number for different
dM and d E'

I I
, 1I

0i

Figure A7
The largest 3 Lyapunov exponents as a function of d at R/R,=182.5, for different values

of d.
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LATTICE GAS HYDRODYNAMICS
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I. MULTI-SCALE FLUID DYNAMICS

A fluid is a multi-scale system whose dynamics cannot be described uniquely. At

the microscopic level such a description involves the virtually infinite complexity

of the many-body problem, which can be bypassed by statistical mechanical methods.

At large scale - that is for wavelengths large compared to the molecular size - the

fluid can be treated as a continuous medium and is therefore adequately described by

classical hydrodynamics. Now, complexity is also reflected at large scale by the

non-linearities iu the hydrodynamical equations, which, except for particular (usual-

ly oversimplified) cases, cannot be solved explicitly. The connection between

microscopic level - the domain of molecular dynamics - and macroscopic level - the

domain of hydrodynamics - is established by Liouville-Boltzmann kinetic theory /Il/.

Correspondingly, three computational approaches have been developped for the numeri-

cal study of fluid dynamics.

(i) The 2pproach via continuous medium description is to solve numerically the

Navier-Stokes equations /2/, which raises the usual difficulties associated with the

numerical treatment of partial differential equations. In practice, feasibility is

achieved by finite elements methods and finite difference equations; these methods,

which use quite involved numerical techniques, have produced spectacular results.

However, they require considerable computational power and so turn out to be very

expensive.

(ii) The molecular dynamics approach starts from a microscopic modeling of the fluid,

simulating a real system of interacting particles. This method has been used exten-

sively for studying therm,iynamic and transport properties as well as small scale

dynan-cal behavior of fluid systems /1,3/. Recently it has been extended to investi-

gate systems suoject to external constraints /4/. The major difficulty here arises

from the ratio of time scales and spatial scales, i.e. the ratio of the characteris-

tic hydrodynamic time versus the molecular interaction time, and the ratio of hydro-

dynamic wovelength versus intermolecular potential range. Both quantities assume

large values; as a result molecular dynamics simulations require long computation

times and large tystems (i.e. large number of particles), and consequently costly

computational means.

(iii) Quite recently, the development of a "poor man version" of the molecular dyna-

mics approach has been stimulated by progress and perspectiv,s in parallel computers.

Similarly as for molecular dynamics simulations, the predictior. of flows in fluids

will follow from a microscopic aescription of interacting particles, but here the

particles are confired to points moving along the links of a regular lattice, and

interactions reduce to simple mathematical rules. The motivation for using a lattice

gas (in fact, a well known model system in Statistical Physics) to simulate hydrody-

namics stems from the idea that the details of the microscopic properties should be
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unimportant to the macroscopic behavior of the fluid. So whether the fictitious

* microworld one uses is a caricature of a real fluid does not matter as long as it

produces correct hydrodynamics. To what extent does lattice gas hydrodynamics meet

this goal? In order to answer this question, we shall first build up the constituti-

ve elemencs to construct a lattice gas; then we shall put a model system to work and

present the results of hydrodynamic simulations; finally the computational aspects of

present and future realizations will be reviewed,

2. THE LATTICE GAS

In a s-nse, the lattice gas approach to hydrodynamics simulation appears as

intermediate between the two other numerica, methods ((i) and (ii) in section 1) in

the way kinetic theory establishes the connection between molecular dynamics and

hydrodynamics. Indeed the hydroayramic equations can be obtained from kinetic theory

by multi-scale expansion, i.e, with the expansion parameters :i/L(A-mean free path;

L=hydrodynamic length) and 'r /r, (?-molecular in.eraction Lime; ZW -hydrodynamic

time). At low (and up to moderate) densities, the Boltzmann approximation combined

with the Chapran-Enskog method yields the hydrodynamic equations and the transport

coefficients /5/. Ac high densities, there is no natural scale separation, and smal-

lness parameter expansion breaks down; one then uses the Green-Kubo-Zwanizg autocor-

relation formalism to obtain the dynamical properties /I/. However, these methods

are unable to treat non-linear hydrodynamics. So, the quescion arises es to how a

kinetic model can be constructed to simu)ate hydrodynamics? Such a prgram will

require to define (i) proper mathematical objects (e.g. in classical hydrodynamics,

density, momentum, and energy), and (ii) appzopriate rules governing then (e.g. the

hydrodynamic equations).

"n constrdcting the lattice gas model, one introduces a priacry simplification

(of considerable computational convenience) by discretizing spac, (tuint pardicles on

a lattice), time, and velocity. Each node on 'he lattice will behave is a eoolean

processor updated at each time step according to the rules "connecting" neighboriag

nodes (via the lattice links), which rules must satisfy conservation laws (mass,

i.e. particule number; momentum; an,' energy). Such a system appears as a Cellular

Automaton /6/ with interactions restricted to first neijhbors according to a set of

collisiou rules to be specified.

3. THE HPP AODEL

A 2-D -quare lattice model was first proposed by Hardy, de Patzis, and Pomeau

/7/ in roe mid-seventies to invesrigat" the ergodic problem and was reactivated about

ten yeazs later fot attempting co simulate nydrocynamics /8/. Consider a plane squa-

re lattice where each node nas iLs statv defined by a 4-bit word to rep-esent the

presence (or the absence) of particles with discrete veloclt~es (I= particle with

unit velocity; Onao particie) on epch of the Four links connecting to the four neigh-

boring noc-es (see Fig.l. So each node has 24 possible input configurations and as

many possible outout configurations, which yields 1616 possible rules, only a limited

nunuber of taem being sccnptable acrording to conservation laws. The collision rules

are shown iti Fig.2; note that the convettion of ootgoing arrows is usually adopted to

indicato to which node particles are aszoclated. The model is referred to as HPP.
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2d BIT

1,st BIT
13d BIT

+ 0-1 4th BIT

Fig.1. b-bit word representation of node state (here b-4)

CONVENTION

Fig.2. Collisions for HPP model. Note that only collisions of the first

type are efficient (i.e. produce momentum transfer).

An exclusion principle is introduced in that no two particles with same velocity

6, can occupy simultaneously the same link (or site I-0,1,2,3;. Obviously, colli-

sion r,.les must be constructed so as to satisfy conservation laws, i.e. number of

pirti and momentum. Note that energy conservation is degenerate here (C10-),

whi . ,- unimportant for incompressible or isothermal flois. (Such a lattice gas is

a model fluid with equal specific heats, Cp-Cv, and equal compressibilities,a Z•Z).

S... .• .. ... . . _ . ..
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4. THE MICRODYNAMICAL EQUATIONS

One defines the state of a node at time t* and position ?* on the lattice

by the Boolean field :n.tu {.)) n , F ] Ca Z. 1, where i der.otes the site bit

(direction, defined mod.4) and , indicates discrete variables. The updating rule

for the cellular automaton follows from a 2-step process : collision, followed by

propagation.

(1) Collision : the state of site I after collision is given by its state before col-

lision minus the depopulating contribution plus the populating contribution, i.e.

n'. = -- (

(2) Propagation : after collision, particles are shifted one unit lattice length over

one unit time step, so that the complete evolution equation reacs

n1 (t #: F. Ci ) n (& F, ) + L. (2)

ni n + i -. nn- (3)£~ •+ n£÷.a ni÷A f•.+, ir 3 (3)

evaluated at t* and 7*, and where ii-l-ni. An ey-Licit example is shown in Fig.3

and a global example of updating is given in Fig.4. Note that this lattice gas model

Is deterministic (a given configuration at time t* yields the (t*+l) eonfigura-

tion uniquely).

Z • -- COLLISION f P AG I

t~x tit+ I

Fig. 3. Example of updating rule according to Eq.(2)

+ 3 0
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Fig. 4. Global example of evolution of cellular automaton from time t.

(uingle arrows) to time t*+l (double arrows).

5. THE MACRODYNAMICAL EQUATIONS

The average population is defined as the occupancy probability of site i at node

r* at time t*, that is /9/

N. (t.,,F) = < h.( t,4' ) > (4)

where the brackets denote an ensemble average over initial co "gurations (see sec-

tion 8), It then follows from conservation, i.e. a.Ai=O nd 4.- C•AO, that

.-- N[(t,, (t&,,7 = ( .6)

Next one defines the density and the mass current respectively by

f~t~t) = ~ ~(7)

f~ 27 ,N
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or equivalently the density per site d P 1/4, and the mean velocity uj/f, where

we have introduced the generalization to a set of b vectors j(i-O.i..., b-l) with

components Ci.(a-l,..D) and modulus C, for a b-nearest-neighbor D-dimensional lat-
tice. (For the HPP model, b-4, D-2, and C-l).

Most important is that 1P and j (or d and u) are slow variables, that is they

vary over a spatial range and on a time scale which are large compared to the micros-

copic apace and time scales. Now the dynamical behavior of the system involves

characteristic times related to (1) relaxation to local equilibrium (Z'); (ii) sound

propagation (r$), and (ii) dissipation (t), with << ' ; ( . Considering the spa-

tial scale expansion parameter C • and Z%, will scale as F-1 and 6-2 respecti-

vely, whereas local equilibrium relaxation is independenL of scaling (i.e.
A, e 0). So a multi-scaling follows with time variables t* 6 t, = t 2 r e2  X

and space variables Fý , F c S . Consequently, not too far from equilibrium the

population distribution function Ni may be expanded as

"N. () FN )

with Ni(O}, the equilibrium distribution function /10/

(0)
N = [1+ exe (9 f (8)

where the Lagrange multipliers h and q can be expressed in terms ofrandy. Conside-

ring the physical nature of the lattice gas model, it is quite logical that a system

with built-in exclusion principle has a Fermi-Dirac equilibrium distribution function

(8). Nnw for lc* vclociLiebw t=1//1 << C, expansion of (8) up to second order in u

yields /10/

e ý , +0 (U1)](9)

G(dt) = (-D/cl)'(.1 0  L)/(I-d) C Q . , C. - T

Note that at zero velocity, Ni (d,0). d f// is independent of i. Starting from the

conservation equations (5) and (6), one performs a multi-scale expansion, - e'd
+ F 9F, Nj z • N + F_ N•j.To first significant order,O(g), one obtains /9/

TN ) + S Z .o

C N +N )

tdii io is ci =p (11)

with the notation I = 2? = I 'i• }d Substitution of the equilibrium distribution

(8) into (10) and (11) yields the macrodynamical Euler Equations

Ot 0+ V,- L 0 (12)
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P -.71I 0 (1 3)

where the leading order contribution to the momentum-flux tensor is given by

p C,') f + f G(f) TI (14)

with (p) W14d)/.t and TO(A = re C( C ,.s C o j .( One thus finds that the

hydrostatic pessure is p = (C¶/.i) , and as a result Lhe sound velocity is

given by

s (/D'z (Cs for the HPP Model) (15)

To next order, O(e*) , the first equation obtained is '0 2' = 0 , which means

that a single species model yields no mass diffusion, and the second equation~ (pa)

*... =0 describes momentum diffusion over long range 0 -2j. Contracting the CO(E)

and )(6) equations, one obtains the macrodynamical equations (for details see

/10/)

• p + " (f•) 0 ,continuity equation (16)

', (fu) + V.P = V.S + k , momentum equation (17)

where oc '¥ • and h.o.t. denotes higher order terms 0(,EA I).

This result is important because Eq.(17) now bears striking resemblance to the

Navier-Stokes equation.

6. ISOTROPY CONSIDERATIONS

The question now arises as to whether, the HPP lattice gas constitutes a model

fluid that produces correct hydrodynamic behavior; put as a straightforward qtuestion,

are the macrodynamical equations for the HPP model Navier-Stokes?

Consider the stress tensor for an isotropic medium in classical hydrodynamics.

Isotropy implies rotational invariance, as a consequence of which the momentum flux

tensor (less the hyd-ostatic contribution) has the form /11/

UX f~ us + 11t ia' P ~ t 2 ('d~c3(18)

The square lattice HPP model has 77/2 rotational Invarlance, which is a subgroup of

the continuous rotational invariance group; as a result, P is not isotropic for the

square lattice gas /10/. So the HPP model produces correct sound propagation /8/,
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but viscous dissipation is anisotropic.

Besides the square lattice, the only basic regular two-dimensional tiling geome-

tries are the triangular lattice and the hexagonal lattice (which, in fact, are reci-

F procal to each other). Frisch, Hasslacher, and Pomeau /9/ proposed to use a triangu-

lar lattice with hexagonal symetry which has M/3 rotational invariance; in this geo-

metry, Tcdy6 has the form /10/

which is isotropic, and so ensures isotropy in the momentum equation. This model

will be refered to hereafter as the FHP model (see section 7).

Extension to 3-D systems faces the problem that the tensors T and S, Eq.(17),may

not be isotropic, i.e. invariant under arbitrary rotations. Indeed none of the four-

teen 3-D Bravais lattices has sufficient symetry to produce the required isotropy of

fourth order pairwise symetric tensors. Solutions to bypass this difficulty, have

been proposed by d'Mumiares, Lallemand, and Frisch /12/. The first solution is a

multispeed model on a cubic lattice, where particles cen have three different veloci-

ties : 0,1, V2; zero for particles at rest, one for particles moving along lattice

links to nearest neighbor, and r2 for parLicles moving along the diagonal to next-

nearest neighbor. As represented in Fig.5a, the state at one node is then given by a

19-bit word. This model is shown /12/ to yield, under appropriate condit'- ', the

proper form for the tensor T (whereas a slight anisotropy persists in S) and so pro-

duces correct inviscid isotropic hydrodynamics.

T1!

"" ~0

So(a) (b)

Fig. 5. 3-D models for lattice gas hydrodynamics. (a) multispeed model on

cubic lattice; (b) 3-D projection of 4-D FCHC.

'I _
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A second model, proposed by the same authors /12/, is based on the observation that

in 4-D, there exists a regular Bravais lattice with all the required symetries.

Indeed the 24-hedron, with 24 vertices represented by the Schllfli symbol 0.4,33

can be used to tile regularly the 4-D space with a 4-D face-centered-hypercubic lat-

tice (FCHC). A 3-D projection of the 4-D FCHC (i.e. one lattice site wide in the 4th

dimension) produces a 3-D lattice with the required symetries. A representation cf

the 3-D projected FCHC is given in Fig.5b. This is a single-speed model, with all

lattice nodes connected via links with unit length c- 2.

The state at each rode is given by a 24-(or 25- if particles at rest are included)

bit word. NIote that an additional momentum equation follows from the existence of a

4th momentum component; this somponent however is a passive scalar because its gover-

ning equation decouples from the others (at least in the low Mach number limit) and

is therefore unimportant. This model, refered to as FCHC, has been put to work very

recently by Rivet to produce the first three-dimensional cellular automaton simula-

tion of hydrodynamic flow /13/.

An alternative possible realization of 3-D cellular automata for hydrodynamic

simulation should be mentioned. It was indeed suggested by Hasslacher that 3-D iso-

tropy could be achieved on a quasi-lattice with icosahedral symetry by projection of

an "oblique" slice out of a 6-D cubic lattice /14/.

7. THE FHP MODEL

Consider a triangular lattice with hexagonal symetry (see Fig.6); each node has

regular hexagonal neighborhood (i.e. 6 links and 6 first neighbors). So the state of

a node will be given by a 6-(or 7-, if one allows for rest particles at the node) bit

word, and the number of configurations associated to one node is 26, which yields

6464 possible rules. Restriction to a limited number follows from conservation laws;

in addition the exclusion principle and efficiency of collisions are to be taken into

account. The collision rules are illustrated in Fig.7.

V:VV , ,V_

I I IO I

Fig.6. Triangular lattice with hexagonal symetry for FHP model. The unit area

around each node is T3/2 (for link length-I).

-I
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BINARY COLL!SIONS - - • OR

TRIPLE COLLISIONS /

(SELF- DUAL) /

QUADRUPLE COLL.R - -

(DUAL OF BINARY )

COLLISION WITH /
SPECTATOR "

COLLISIONS (BINARY) - *

INVOLVING A
PARTICLE AT REST :: •/9

HEAD-ON COLLISION
+ REST PARTICLE -- * - /

(TRIPLE COLLISION)

OUTGOING ARROWS

CONVENTION, e.g.

Fig.7. Collision rules for FHP model

Although the probability of actual triple collisions in a real gas is quite

small compared to the probability of binary colli•ton, triple collisions are very

important here. Indeed head-on collisional processes conserve particle number and

momentum, but also difference in particle number in opposi.e directions, which yields

a total of 4 conservation laws in a 2-D systemi Therefore triple collisions are cru-

cial in that they remove the spuriovs invariant. On the other hand, head-on colli-

x3?

oi
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sione exhibit an interesting feature because they have two possible output channels

(see Fig.7). So by making a random choice of output configuration, mirror-symetry ts

preserved, and furthermore the model is non-deterministic.

Hicrodynamical equations. For simplicity we consider the case with bins~y and

triple collisions (without particles at rest; the generalization is straightforward).

As described in section 4, updating the cellular automaton proceeds in a two-step

sequence (with collisions followed by propagation) which is expressed by the opera-

tion

(20)

where i-0,...,5 denotes the site numbes (or link direction) as shown in Fig.6. Here

A j is the sum of the positive (populating) contributiona and of the negative (depo-

pulating) contributions from binary and triple collisio a, i.e.

n i n1*3 T' -t/ f .2 T 49 s (21)

-n,'.,t n'I .''•5 n i 5 61 2 " ItV' - nC" 7it.2 '7 1'+,, Ft*I n '¢ tj '.in+s

all quantities being evaluated at t*, 7*, and where <t> and (j)= 1-(ý> denote the

probabilities for output channel selection in head-on collisions (corresponding to

M"•/3 rotation in configuration); usually (4>= [-(k) -1/2. An example of evolution

after one time step is shown in Fig.8.

Fig.8. Example of evolution from time L,(single arrow) to time t,+l(double

arrow) on the hexagonal lattice gas.

(Note the convention of outgoing arrows in the collision representation)

rK • • •
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8. MACRODYNAMICS FOR NON-DETERMINISTIC MODELS
4

As usual in Statistical Mechanics, we now switch to a probabilistic description

/10/, and define the phase space r as the set of all possible assignments

(=..- of the Boolean field niCF*). Thcn I'as(.)) is the probability, at

time t*, for assignement s(.) (which can also be called a configuration) with

SP(t, so.) =i , ( S(.) G r ) Starting from an ensemble of Initial

conditions, each configuration evolves according to the updating rules of the automa-

ton. This is formally expressed by the "Liouville equation"

? ( t*tI,. e S(. )) = I?( t*, S(.) ) (22)

with 4', the evolution operator, which can be written as e= fe 6, where e is the

streaming operator and e , the collision operator. In order to indicate explicitly

the two-step sequence of the automaton evolution, one can rewrite Eq.(22) as

F(t*,I , 7,s(.) ) = F ( , , C's(.)) (23)

Now, for non-deterministic systems, the description must be generalized so as to

include all possible choices of the Boolean variables t.., , givln• the transition

selection from state a to state s'. Each transition being assigned a probability

A(k -s'), one has < tS,>-A(s- s'), V s,s', in accordance with the "semi-detailed

balance" assumption

Z A (S- ,S') = I , S'
S (24)

which expresses that, if all states have equal probabilities before collision, they

also have equal probabilities after collision. Given that the t 's take values

independent of each other at each time, defining in this way a harkov process, and

given that the e values may be assumed to be independently chosen at each node,

Eq.(23) becomes

r(t -, ti, s) 21 FL A(s(F.) -. s'0=.)) P(t,, S(.)(

This Master Equation describes the evolution of a probabilistic cellular automaton by

expressing the probability for a (propagated) configuration s'(.) in terms of all

possible initial configurations s(.) weighted by the transition probabilities. Note

that in the deterministic case, A(s-s') reduces to e -ls'(.), and Eq.(25) becomes

simply the Liouville equation (23).

Lattice properties being translation - invariant, equilibrium solutions should

be the same at tach node; so steady-state solutions to Eq.(25) should be of the form

• It
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where the probabilities p(s) of a given state are node independent, and can therefore

be factorized over all cells, i.e.

s) Tý s - I-5)CV NO)

By substitution of the above expressions into (25), one obtains a Master Equation

expressed in terms of the Ni's, and it can be shown /10/ that iL6 steady state solu-

tions are given by the Fermi-Dirac distribution introduced in seLtion 5.

Macrodynamics desivribes the evolution of the observables. A- observable X is

defined by the mean value

S(.) (26)

which yields the explicit definition, for non-deterministic systems, of the quanti-

ties introduced in section 5. Following the scheme outlined in that section (for

details see ref./l0/), one obtains the macrodyamical equations, (16) and (17), which

now, provided isotropy is satisfied, can be cast into a form stressing their analogy

with the equations of classical hydrodynamics

+ 49 r 0 (27)

apj (28)

with

c. (i- g(d) u C'/) +% (~ td) 4' (29)

A%ý(P) L (f"Aui + 9bad (. -' (alp) 'D'(fUJ)4(C J (30)

where

D+ O (31)

The factor g(d) is specific of the lattice gas description and Is related to particle

- hole duality. In particular it vanishes when the particle density and the hole

dentity are equal (d=1/2). At any rate, since the coefficient Ld) weights quadratic

terms, it Phould be of minor importance at low speeds. However it raises a more

serious problem that will be discused later.

In (29), ca-C/ ( D is the sound velocity (ignoring corrections a <•I), and in

(30), A2(>) is the kinematic viscosity which contains a positive contribution, )C •

the collisional viscosity, and a negative contribution, ý
0P , the propagation visco-

sity (with < l , so that > 0 ). The existeuce of the latter is a
consequence of the discrete nature of the system : there is a collisionless step in

the dynamics (propagation) during which f)uctuations do not regress /15/.
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Lit;ea:ized hydrodynamicr To first order in the Ferturbations, u, and

(where is the mean equilibrium density), the linearized hydrodynamic equations

read

S+ f .1.4 0o(a
'?~j"+ f~d~(32)

J7O (%2 33)

Measurements of sound propagation and d;mping /16/ were performed on a FHP lattice

gas by applyiig an initial perturbation to the velocity field : (uI+u.L) Cos k.r,

where k is the wave vector of the perturbation; u 11 'k.u corresponds to the longitudi-

nal current, and uj_&xu1 to the trarsverse current. The results of the lattice gas

experimen. /16/ are shown in Fig.9.

1,I I1I

.7A

*!i "j

0 256 t 512

Fig.9, Sound propagation and damping in FHP lattice gas (106 nodes). Time

evolution (unit time is time step) ef normalized density fluctuations

and velocity fields (d'Humiares, Lallemand, and Shimotura; 1935).

Viscosities we rewrite the hydrodyihawic equations for the hexagonal lattice

gas as

+ . U4+ ()
± + ) (34)5

'd + 72 (35)
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cwith r(d)-(t-d) 1-d) ere s and are the coefficients of shear and bulk vie-

eosity respectively, for which explicit expressions have been obtained by Rivet and

Frisch, either from the Boltzmann approximatiou /17/ or from the Green-Kubo autocor-

relation formalism /18/. A comparison of theoretical results with lattice gas simu-

lation data /19/ ic given in Fig.10. The basic model is the FBP lattice with binary

and triple collisions (five collision rules, see Fig.7); this model is noted I in

Fig.lO. The model noted II includes collisions with particles at rest (see Fig.7;

twenty-two collision rules). In the model noted III, all possible collisions satis-

fying cotservation laws have been used (seventy-six collision rules). It should be

noted that the agreement between theory aod experiment is improved (in particular,

negative values are eliminated) when model III is restricted to sixty-four collision

rules /20/. Most important is the observation that viscosities decrease when more

collision rules are used, a fact of considerable interest for achievable Reynolds

number values, as discussed below.

0.2

•0= •II* *

> 0 J

0 0.1 0.2 0.3 0.4 B a5
Density per link

Fig.l0. Shear and bulk viscosities for FHP lattice gas. Curves are !or

theor6tical results, dots for cellular automata simulations (2562

nodes). 1,11,III refer to the models described in text. (d'Humiares

and Lallemand, 1986)

Incompressible Fluid : The incompressible hydrodynamics limit is obtained by

setting ("frozen density") except in the pressure term of the momentum equa-

tion, i.e.

S + UoaVU _ - 7r, + Vt U .

where •= • (./I). This set of equations differs from the classical incompressible

fluid equations (obtained by a low Mach number, (/C5 , expansion of the hydrodyn;" ic

equations) by the presence of the factor go. However appropriate scaling

(C2 (37
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y'ields the cc~re.et form cf the hydrodynamic equations in the incompressible fluid

limit (except for the particular value d-1/2, which is a peculiarity cf the lattice

gas duality invariance,. Ncte that the factor g(e) raises a difficu,ty in the

:Zompressible case, since time scaling is different for the momentum equation and for

the continuity equation, and therefore mass propagation would not occur on correct

time scale.

Rcynolds Number :An important consequence of the sc~ling is felt throurh the

Reynolds niumber which now reads

Her.2 "o is the characteris.Aic length (measur!d In lattice length unit), v' is the

characteristic velocity (with velocity unit C), and V7 is the rescaled kinematic vi&-

cosity, (37). Obviously, highjr Reynolds nuimber simulat~ons will be more easily per-

fol.'med with systems with lower viscosity, An illustration is Siven in Fig.l1 tor the

models FHP 1,I1,111 for tuh~ch tl-e viscosities are shown in Fig.lO. So the optimiza-

tion of t-ic Reynolds numver shculd be viewed not only Lit terms of large syntems and

high speeds, but also of those factors that minimi::e the kineaatic viscosity, i.e.

via an optimizat-on of the collision rules. For instance, the nighest achievable

Reynolds number with FM? III is six times the value obtained with FPH I, (~see Fig.

11); and the gain factor should be at least sixteen for the pseudo 4-D FCH(. motlel

(see section 6) /10/.

3

0

Density per link

ifig.1l. Reynolds number OptiMisati(,n for models Fil? 1,I1,I11, as a funcLIon of

densi.'y per link, d.(e'lHumiareSanc; Lallemand; 1986)

9, CBLLLL.AR AUTOM4ATA SIMULATIONS

Most of the hydro.~ynamica simulations performed to date have been realized on

2-Dl hexagonal lattices, i.e. with the FHP model, using collision rules including

cen'rers (particles at reast). The state of the system at time t* is given by a
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LlxL2 matrix (size of the CA universe) of 6-(or 7-) bit words assigned to each node.
The bit valde 1 or 0 reflects the presence or the absence of a particle at site

i(-0,...,5 or 6) with velocity Ci. Updating the universe is performed by "solving"

the microdynamical equations (collisions + propagation) by a sequence of logical

operaLions (Compitttional aspects are presented in Appendix). Boundary conditions

and initial conditions are bet according to the problem studied. For instance, in

the sound ptopagation experiment illustrated in Fig.9, a uniformly random distribu-
tion of particles and velocities is realized as initial condition, and periodic boun-

dary conditions are imposed, which confipe the systex on a torus(particles iscaping

the universe at one boundary are reinjected symetrically at the opposite boundary).

On the other hand, a directed flow simulation experiment requires an initially biased

velocity distribution along a given directiou, with boundary conditions ensuring

steady incoming flow of particles at the input side and "sink" condition at the out-

put boundary. In experiments such as channel flow and flow behind obtacles, their

shape is designed according to the lattice geometry by specific collision rules, with

reflection conditions corresponding to free-slip boundaries (specular reflection;

Fig.12a), no-slip boundaries (bounce-back reflection, Fig.12b), or rough surfaces

(combination of spscular and bounce-back reflections with equal probabilities, Fig.

12c). the obstacle size 1o must be small compared to the size L of the CA Universe

in order to avoid artefacts. In tu'n large L implies large numbers of particles,

i.e. large lattices.

(a) (b) (c)

Fig.12. Boundary reflections : (a) free-slip; (b) no-slip; (c) combination of

(a) and (b).

Presently typical 2-D lattices are of the order of 3x10
6 

nodes (e.g. 1024x3072) popu-

lated with 6x10
5 

particles, i.e. with a density dvO.2 (p "L.4). Streamline m.ps are

obtained by representing the velocity field vectors associated to the fluid elements,

i.e. by averaging the particle velocities over a number of nodes (e.g. 8x8,
32x32,... depending on the problem under investigation). Tech'ical restrictions as to

the universe size, the minimal kinematic viscosity, and the velocity u (whic% must be

small c)mpared to the upper limit C) are determinant; within these limits presently

achievable flowa are for Reynolds numbers not exceeding 103. It is to be expected

that fastly progressing developments will overcome these limitations in the near

future.
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Poiseuille flow in a cnannel. Flow at the inlet of a 2-0 duct was simulated by

d'Humiares and Lallemand /21/ on a 512x3072 kHP 1I lattice gas with d-.22 and average

velocity u-.30. Velocity profiles so obtained are presented in Fig..13 for the region

close to the input boundary (Fig.13a) and for a region located about ten times fur-

ther downstream (Fig.13b) where a characteristic Poiseuille profile has developped.

Fig.13 shows good agreement between the CA simulation and the profiles computed by

the Slichting method. This is the first example of quantative comparison between

lattice gas flow and classical fluid mechanics for a hydrodynamic system involving

both viscous dissipation and non-linear behavior.

#174

(a) , .(b)

0 01 02 03 O 0 1 Q2 Q3 ?A

Fig.13. Velocity component profile in a channel (a) close to the inlet, and (b)

furehLr downstream (relative distances from inlet are •.5 (a) and 6• b.

(b)) (dPlumiares and Lallemand; 1986).

von Karman streets. The first hydrodynamic flow "experiments" on a lattice gas

were performed in 1985 by d'Humrires, Lallemand, Shimomura, and Pomeau /16,22/, then

by Salem and Wolfram /23/, to simulate wakes behind a plate. More accurate results

for this and related problems are now available /19,24/. An example of von Karman

street developping behird a flat plate at Re-300 is given in Ftg.14, where two suc-

cessive velocity maps are shown, indicating the unsteady nature of the flow. Similar

experiments have also been performed to simulate flow .roune a stationary cylinder

/24,25/

Flow around a wing profile. The example in Fig.15 shoving streamlines around an

airplane wing profile at various incline~tons with respect to the mean flow direction

/2o/ illustrates the ability of the method to convenienL)y realize mori complex obs-

tacle shapes and modify their orientation without computacional difficult:,.
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...- ....-..------
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Fig.14. von Karman streeL formation behind a "bounce-back" (see fig.12) flat

plate in 512x1024 CA wind tunnel experiment at Re-70; time (b) time

(a)+500 time steps. (a'Humiares and Lallemand; 1986)

0*

S. . . . . . • .. .- ..... ...'

lOG

Fig.15. Flow around an airplane wing at various inclinations with respect to

the direction of average input flow. (Lallemand and d'Humiares; 1986)

X-It
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SChannel flow in expanded geometry. This phenomenon was studied by simulating

flow in a channel with sudden expansion (Fig.16) where recirculation (back flow)

takes place behind the step profile /26/. Isomach curves map the velocity field at

Reynolds numbers Re-50 (Fig.lba) and Re-150 (Fig.16b); the latter is also shown on an

expanded scale (Fig.lbc) along with the corresponding isodensity curves (Fig.16d).

The arrow in Fig.16b indicates the location of the reattachment point as evaluated

from Navier-Stokes finite elements-finite differences computations; as seen, good

agreement is obtained.

(QI (c)

(b) (d)

Fig.16. Channel flow with sudden expansion. Isomach curves for velocity compo-

nent along the average input flow direction at Re-50 (a) and ke-150

(b,c); A =MO-1%, Isodensity curves (at p -. 95 fOax) at Re-150 (d).

(Note 2x expanded spatial scale in c and d). Arrow (in b) indicates

reattachment point (Noullez, Lallemand, and d'Humi~res, 1986)

10. FURTHER DEVELOPMENTS

Important progress has been realized receatly in CA simLlations of hydrodynamic

flows to study problems like jets in periodic channels, flame fronts, and the Kelvin-

Helmoltz and Rayleigh-Taylor instabilities /27/. Such problems involve the introduc-

tion of two-species particles. In this respect, current research activity on lattice

gas hydrodynamics has led to interesting variations of the FHP model. One of the
most promising versions is a two-species model where a 'color" bit is added to the

particles. The automaton is then a 14-bit model which uses tne FHP collision rules

between identical patticles, but additional rules for color exchange between colli-

ding particles of different species /27/. If "color" is to be conserved during

collisions, the model is for mutual diffusion of two equivalent non-reacting gases.

As the two species are then perfectly miscible, the system reaches homogeneous state

in short time. Or. thc other hand, Interfaes can form b7tween different 7pecies if
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reactive collisions change the relative number of particles of each type. A simple

chemical reaction is described by the majority rule for autocatalytic transformation:

k
2A + B --. 3A

k,
A + 2B --. 3B

Such a transformation rule induces a phase separation between A-dominant and

B-dominant regions. These regions are separated by interfaces whose stationary

length is proportional to (/), with D, the mutual diffusion coefficient, and ki

the reaction rate. Different collision rules can be used to model other types of

chemical reactions, like e.g. combustion /27/.

Body-forces can be introduced by including collision rules that do not conserve

momentum. These collisions flip bits in the required direction with the correct pro-

bability to simulate external forces (e.g. gravity effects). With different propabi-

lities for different particle species, gravitational instabilities can be simulated.

As an example, Fig.17 shows the 2-D simulation of the Rayleigh-Taylor instability,

which develops when a heavy fluid penetrates a lighter fluid layer /27/. Another

illustration is the Kelvin-Helmoltz instability where two fluid layers moving in

opposite directions with respect to each other, develop, by shear constraint, a roll

up at the interface, as shown in Pig.18.

(0)

..... .: .... ... .• : . :! .. • : .H ' .• .i • : ., .......
7.' " .• .t .' ... .. ... .:: " • . •..

•.t~ I!::i{ ,!

fFig.17 :2-Dl lattice gas simulation of the Rayleigh-Taylor Instability. Maps of

A-particle flux (a) and of B-particle flux (b) after L-1600. (Clavin,

d'Humiares, Lallewand, and Pomeau; .986)
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.........

Fig.18 2-D lattice gas simulat!on of the Kelvxn-Helmoltz instability. Average

velocities are + u (left to right) and - u (right to left) in lower

half and in upper half of channel respectively. Map shows flux of

particles of one species (d'Humiares, Lallemand, and Searby; 1987)

Among the numerous problems encountered in the realization of lattice gas simu-

lations, one of the most acute is contained in the g(d) factor appearing in the pseu-

do-Navier-Stokes equations (29); this factor should be equal to one for mass and

momentum propagation speeds to be the same (this is crucial when mass diffusion is

important, e.g. in chemistry experiments) /27/. It would also be interesting to

decrease the value of the sound speed and oi the kinematic viscosity, particularly in

2-D systems, in order to investigate supersonic and turbulent flows. So far, only

athermal model systems have been treated; temperature can be introduced via many-

speed models, yielding a velocity distribution and thus an additional collision inva-

riant. MaJor progress will be realized when 3-D models become tractable; the first

results in týhat direction have been obtained very recently /13/. They concern 3-0

simulations of Taylor-Green vortices performed with the FCHC model (see section 6)

and are illustrated in Fig.19.

Lattice gas m. dels exhibit attractive properties of simplicity, both conceptual-

ly and operationalLy. Considering the fast development of this field of research

over the past two years, and the considerable interest raised by its perspectives,

further progress is to be expected in the theory, in the experimental methods, ane in

the computational techniques, in the near future.

t _ _ _ _
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Fig.19 3-D hydrodynamics simulation of Taylor-Green vortex on 128x128x128 FCHC

lattice at time t0O and time t-2 (256 automaton time steps). Velocity

fields are shown for the vertical "wall" plane (a) and for the

horizontal "floor" plane (b) (Rivet, 1987).

ACKNOWLEDGEMENTS

We thank Dominique d'Humiarea, Uriel Frisch, Pierre Lallemand, and Jean-Pierre

Rivet for stimulating discussions. One of us (AN) has benefited from a grant by the

"Institut pour l'Encouragement A la Recherche Scientifique dans l'Industrie et

l'Agriculture" (IRSIA, Belgium). JPB acknowleges support from the "Fonds National de

la Recherche Scientifique" (FNRS, Belgium). This work was supported by European

Community Grant ST2J-019O-2-B.

APPENDIX : COMPUTATIONAL ASPECTS

Most of the lattice gas hydrodynamics experiments performed tu date have been

simulated on conventional computers, the initial objecLive being to validate the

method and to improve the model(s) before designing a dedicated lattice gas machine.

The state of the lattice Bas is kept in a general computer as a large array of 6- (or

7-, if rest centers are Included) bit words per node : each bit specifies, if true,

the presence of a particle leaving that node in one of the six directions. The evo-

lution of the system is obtained by a sequence of two-step processes : propagation

and collisions. The propagation operation reduces simply to moving each bit to the

adjacent memory location In the direction specified by its speed index. Collisions

can be dealt with in Lwo ways.

Ii
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(i) The "brute-force" approach is to constrrct a look-up table giving, for each

possible input configuration, the output configuration according to the collision

rules. For the 2-D FHP model, there are 64 possible input states; so the table will

be 64 6-bit words long. Howe,,r this procedure becomes untractable for many-bit

models when the size of the table overflows the available memory (for instance, the

4-D FCHC model would require a 16.77...million 24-bit words table, which is clearly

unrealistic).
(Ii) The second method for generating collisional processes is to evaluate the

new state as a function of the previous state using logical operations which can be

performed very fast on a binary computer. The arithmetic version of such operations

is given in section 3 (see e.g. Eqs (3) and (21)); in logical form, they can be opti-

mlzed to obtain maximum efficiency. As an example, the logical version of the HPP

collision rule (Eq. (3)) is cast as

n = niVs ; i - 0,1,2,3

s a (nuVnl)A(nl-p'n2)A(n2Vn3) (A.1)

which takes 9 logical operations per site (V -exclusive OR; A - tiND). Similarly, the

FHP collision operator (see Eq. (21)) can be expressed in a form involving about 60

logical operations (130 if rest particles are included). Writing the collision ope-

rator in terms of logical operations presents the advantage that many collisions can

be realized in parallel by operations between whole computer words Instead of single

bits; for instance, an FPS-164 vector processor can coppute simultaneously the evolu-

tion of 64 nodes (note that although there are more operations per site than a single

look-up table accesb, this method is nevertheless four times faster than the table

method on a 64-bit machine). When the logical operation method is implemented on the

FPS-164 computer, it takes 0.6 Vs to update a node (collisions + propagation), which

implies that, for maximum efticiency, the whole lattice should be stored in main

memory. Consequently, the number of nodes is limited to a few millions on conventio-

nal computers, i.e. lattice sizes a few thousand nodes squiare.

The lattice is initialized by computing a random initial state whose macroscopic

properties correspond to the desired density and velocity fields. The average link

populations are given by /16/

<niý (f) - d(f) [l + - um(•)'i + O(uz) 3 (A.2)
3d

- d(F) [I + 2 u(r).Ui i , for FHP I

Given the local density and velocities, the link popnlations are generated ran-

domly by Monte-Carlo method to obtain the required averages (A.2). Boundaries are

implemented by special "tagged" nodes with different collisions rules. These colli-

sion rules can be specified so as to specularly reflect the particles to simulate

free-slip boundaries or to have the particlep bounce back to obtain no-slip bounda-

ries (see Fig.12). Different types of boundary nodes are needed depending on the

excluded links determined by the boundary geometry around these nodes. Obstacles of

any desired shape are set by dividing their boundaries along the lattice links and

imposing proper reflection conditions. Pressure on an obstacle is measured by avera--

ging the momentum transfers between particles ard boundary. Macroscopic quantities

are obtained by averaging the corresponding microscopic quantities on small rectangu-
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lar regions. The size and shape of these regions can be adapted to suit the problem

considered (e.g. 32x32 nodes for channel flow, Fig.16; lx256 nodes for 1-dimeesional

boundary layer experiment, Fig.18). The macroscopic quantities need only "e calcula-

ted at times separated by many microscopic times because characteristic hydrodynamic

times are ldrge compared to molecular times, Generally, microscopic equilibrium is

attained in a few tens of time steps and stationary sol,tions (when such solutions do

exist) are reached after a number of time steps corresponding to a few times the

characteristic lattice length.(note indeed that perturbations travel at the bound

speed which is 0(1) for the lattice gas model).

Once started, the evolution of the model is completely deterministic; this means

that it can never run into unphysical regimes and is free of numerical instabilities

such as those encountered in finite elements methods. The maximum Reynolds number

value that can be reached by the lattice gas method Is limited by the memory size.

Indeed, the rescaled shear viscosity (37) has a minimum value at a given density (see

Fig.lO) and the flow velocity should remain small compared to ca (in order to preser-

ve inýcompressbillity). So the Reynolds number is at best proportional to the obstac-

le characteristic length, which itself is a fraction of the Lattice length. Conse-

quently, the size of the lattice should increase like the square of the desired

Reynolds number value. As the calculation time per node is roughly constant, the

time for a single lattice update grows as Re
2 

and the complete calculation time sca-

les as Re
3

. On the other hand, since Re is inversely proportional to V, a decrease

in kinematic viscosity by a factor c will induce a gain factor O( 3) in computation

time. This can be achieved by improving the collision rules and/or the lattice geo-

metry (note that a factor of 6 on the viscosity has been gained in the current best

implementations of the FHP model as compared to its original version).

Alternately, higher speeds can be obtained by dedicated hardware for which lat-

tice gases are particularly well suited; indeed, the lattice gas state is specified

by a small number of bits at each node and the evolution r 'e is strictly local and

deterministic and can be written with logical operations only. The number of logical

operations necessary for the FHP model is however too large to render a completely

parallel machire competitive : most of the silicon would have to be dedicated to the

gates computing the evolution rather than to registers keeping the node states.

Also, parallel modules would require a large number of wired connections between

modules it the whole lattice does not fit in a single module. So only serial machi-

nes have been Lonstructed to date. In these machines, delay registers have been

introduced in the computation loop in order to simulate parallelism (it is necessary

to awoid modifying a location before it has been used by all its neighboring nones);

on the other hand, a single evolution operator evaloator is sufficient (Fig.A.l).

This evaluator is generally In the form of a tead-write look-up table, so that evolu-

tion rules zan be modified easily. the first reallzation was the cellular automati

machine (CAM) built at MIT /28/. This is a general purpose cellular automata machine

computing the evoluticn of a 256x256 lattice at the U.S. television field rate. CAM

uses 4 bits/node, so that lattice gas simulations need grouping sites by four, redu-

cing th. resolution to 128x128, which is insufficient for most hydrodynamic simula-

tions. A more recent realization ij the "Reseao d'Automates Programmables' (RAP)

built at the ENS (Paris) /29/ which updates 512x256 16-bit sites fifty times per

second. RAP is quite similar to CAM, but its architecture Is slightly different in

that it moves results rather than parameters, which renders RAP more efficient at

handling lattice gas rules. RAP updates 6.5 Msites/sec which compares favorably with

the 1.2 Msites/sec rate obtained with the FPS-164 vector processor. Both CAM and RAP
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rely on an external (micro) computer for defining the rules, introducing the initial

conditions, sad performing the final averaging to obtain macroscepic physical quanti-

ties. A 1024x1024 RAP-2 version, currently under development, uses 8 locked proces..

sors, each one roughly equivalent to RAP-I. Since the proies.ors sweep the lattice

in phase, pre-averaging over 2x4 site blocks can be performed continously on-board;

as a result, the transfer rate to the processing computer will be considerably redu-

ced.

ADDRESS I

RUL OUT ADDRESS VIDEO

I, v RULE Iot DRE COLOR -___

0 ES TABLE [ TABLE -

Fig.A.1 Block diagram of typical cellular automata machine. All timing

signals are obtained from a video controller whose addresses outputs

scan the whole lattice continuously. The current lattice nodes

content is used as an address into a table giving the new state to be

written back into that nods. Delays are introduced in order to

prevent modification of a node befo~e its state is used by all its

neighbors. The new state of a node is also transfered to the video

outpul via a color table. The content of this table is choacn so that

only relevant states are shown in any dusirad color. Before startiug

the computation, the rule table, the color table, and the lattice

memory are initililzed by a microcomputer via an input/output port
(I/0).
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